ЛЕБЕГА ИНТЕГРАЛ

ЛЕБЕГА ИНТЕГРАЛ

- одно из наиболее важных обобщений понятия интеграла. Пусть - пространство с неотрицательной полной счетноаддитивной мерой причем Простой ф у. н к ц и е й наз. измеримая функция принимающая не более счетного множества значений: Простая функция gназ. суммируемой, если ряд

сходится абсолютно; сумма этого ряда есть интеграл Лебега:

Функция суммируема на если существует равномерно сходящаяся на множестве полной меры к f последовательность простых суммируемых функций gn и предел

конечен. Число I есть интеграл Лебега:

Определение корректно: предел I существует и не зависит от выбора последовательности gn. Если то I - измеримая почти всюду конечная функция на X. Л. и. есть линейный неотрицательный функционал на обладающий следующими свойствами:

В случае, когда

интеграл Лебега

определяется как

при условии, что этот предел существует и конечен для любой последовательности Е п такой, что

В этом случае свойства 1), 2), 3) сохраняются, а свойство 4) нарушается. О переходе к пределу под знаком Л. и. см. Лебега теорема. Если Аесть измеримое множество X, то Л. и.

определяется или, как указано выше, заменой Xна А , или как

где - характеристич. функция А;эти определения

эквивалентны. Если для

любого измеримого Если

измеримо для каждого п, для

Обратно, если при тех же условиях на А n для каждого и

то и верно предыдущее равенство ( -аддитивность Л. и.).

Функция множества

абсолютно непрерывна относительно если то F(А).есть неотрицательная абсолютно непрерывная относительно мера. Обратное утверждение представляет Радона - Никодима теорему.

Для функций название "интеграл Лебега" применяется к соответствующему функционалу, если мера есть Лебега мера;при этом множество суммируемых функций обозначается просто L(Х).и интеграл

Для других мер этот функционал наз. Лебега-Стилтьеса интегралом.

Если - неубывающая абсолютно непрерывная функция, то

Если

-мо-

нотонна на

и существует точка

такая, что

(вторая теорема о среднем).

А. Лебег дал в 1902 (см. [1]) определение интеграла для и меры являющейся мерой Лебега. Он строил простые функции, равномерно приближающие почти всюду на множестве конечной меры Еизмеримую неотрицательную функцию и доказал существование общего предела (конечного или бесконечного) интегралов этих простых функций при стремлении их к f. Л. и. является базой для различных обобщений понятия интеграла. Как отметил Н. Н. Лузин [2], свойство 2) - т. н. абсолютная интегрируемость, выделяет Л. к. для из всевозможных обобщенных интегралов.

Лит.:[1] Лебег А., Интегрирование и отыскание примитивных функций, пер. с франц., М.- Л., 1934; [2] Лузин Н. Н., Интеграл и тригонометрический ряд, М.- Л., 1951; [3] Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 5 изд., М., 1981. И. А. Виноградова.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "ЛЕБЕГА ИНТЕГРАЛ" в других словарях:

  • Лебега интеграл — Интеграл Лебега  это обобщение интеграла Римана на более широкий класс функций. Все функции, определённые на конечном отрезке числовой прямой и интегрируемые по Риману, являются также интегрируемыми по Лебегу, причём в этом случае оба интеграла… …   Википедия

  • Лебега интеграл —         одно из наиболее важных обобщений понятия Интеграла, предложенное в 1902 А. Лебегом …   Большая советская энциклопедия

  • Интеграл Лебега — Стилтьеса — Интеграл Лебега  это обобщение интеграла Римана на более широкий класс функций. Все функции, определённые на конечном отрезке числовой прямой и интегрируемые по Риману, являются также интегрируемыми по Лебегу, причём в этом случае оба интеграла… …   Википедия

  • Интеграл Даниэля — Одна из основных трудностей в использовании традиционного интеграла Лебега состоит в том, что его применение требует предварительной разработки подходящей теории меры. Существует другой подход, изложенный Даниэлем (Daniell) в 1918 году в его… …   Википедия

  • Интеграл (значения) — Интеграл (см. также Первообразная, Численное интегрирование, Интегрирование по частям) математический оператор: Определённый интеграл Неопределённый интеграл различные определения интегралов: Интеграл расширение понятия суммы Интеграл Ито… …   Википедия

  • ИНТЕГРАЛ — одно из центральных понятий математич. анализа и всей математики, возникновение к рого связано с двумя задачами: о восстановлении функции по ее производной (напр., с задачей об отыскании закона движения материальной точки вдоль прямой по… …   Математическая энциклопедия

  • Интеграл — (от лат. integer целый)         одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны, отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости… …   Большая советская энциклопедия

  • Интеграл Даниеля — Одна из основных трудностей в использовании традиционного интеграла Лебега состоит в том, что его применение требует предварительной разработки подходящей теории меры. Существует другой подход, изложенный Даниелем (англ.) в 1918 году в его… …   Википедия

  • Интеграл Курцвейля — Интеграл Курцвейля  Хенстока  обобщение интеграла Римана, позволяет полностью решить задачу о восстановлении дифференцируемой функции по её производной. Ни интеграл Римана (в том числе и несобственный), ни интеграл Лебега не дают… …   Википедия

  • Интеграл Лебега — Сверху интегрирование по Риману, снизу по Лебегу Интеграл Лебега  это обобщение интеграла Римана на более широкий класс функций. Все функции, определённые на конечном о …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»