ИНТЕГРАЛ ПО ТРАЕКТОРИЯМ


ИНТЕГРАЛ ПО ТРАЕКТОРИЯМ

континуальный интеграл, функциональный интеграл,- интеграл, областью интегрирования к-рого служит то или иное функциональное пространство. Чаще всего И. по т. определяется как обычный интеграл Лебега от функционала, заданного на пространстве функций (возможно, обобщенных) по нек-рой мере (быть может, комплексной) в этом пространстве.

В тех случаях, когда лебсговская конструкция интеграла оказывается неприменимой, рассматриваются и другие способы континуального интегрирования. Напр., вместо мер используются предмеры (или квазимеры), т. е. аддитивные функции множества, определенные на алгебре всех цилиндрич. подмножеств функционального пространства и такие, что их сужения на любую s-подалгебру цилиндрич. множеств с фиксированным носителем являются уже мерами. Иногда И. по т. определяется как предел при n-кратных интегралов (вычисляемых по мере Лебега в Rn), возникающих при подходящей аппроксимации пространства функций (области интегрирования) п-мерным пространством, а интегрируемого функционала - функцией от ппеременных. Эти и другие определения И. по т. применимы каждое к своему специальному классу функционалов, причем в тех случаях, когда эти определения пригодны одновременно, они могут, вообще говоря, приводить к различным значениям интеграла. Наконец, И. по т., встречающиеся в литературе по физике, подчас вообще не имеют точного смысла, а рассматриваются как формальные выражения, с к-рыми оперируют как с обычными интегралами (замена переменных, мажорирование, дифференцирование по параметру, предельный переход и т. д.), часто, однако, получая при этом серьезные и эвристически ценные результаты.

И. по т., появившиеся первоначально в теории случайных Процессов, позднее были использованы для представления группы

а также полугруппы операторов

где H - Штурма- Лиувилля оператор в пространстве Rn (оператор энергии для системы квантовых частиц). Подобные представления были получены затем для более широкого класса операторов Н(всякое такое представление обычно наз. формулой Фейнмана - Каца) и явились удобным средством для изучения свойств этих операторов (оценка границ спектра, асимптотика собственных значений, свойства рассеяния и т. д. [3]).

Среди применений И. по т. в математич. физике (основанных главным образом на формуле Фейнмана - Каца) наиболее глубоким оказалось их использование в проблемах квантовой статистич. физики [4] и квантовой теории поля [5], [6]. С И. по т. связано отчасти и развитие общих вопросов теории меры и интегрирования в бесконечномерных пространствах [7], [8].

Лит.:[1] Фейнман Р., Xибс А., Квантовая механика и интегралы по траекториям, пер. с англ., М., 1968; [2] Кац М., Вероятность и смежные вопросы в физике, пер. с англ., М., 1.965; [3] Гельфанд И. М., Яглом А. М., "Успехи матем. наук", 1956, т. 11, № 1, с. 77-114; [4] Genibrе J., Statistical mechanics and quantum field theory, N.Y., 1971; [5] Боголюбов H. H., Ширков Д. В., Введение в теорию квантованных полей, М., 1957; [6] Саймон Б., Модель Р(j)2 евклидовой квантовой теории поля, пер. с англ., М., 1976; [7] Смолянов О. Г., Фомин С. В., "Успехи матем. наук", 1976, т. 31, .№ 4, с.3-56; [8] Sсhwаrtz L., Radon measures on arbitrary topological spaces and cylindrical measures, L., 1973.

P. А. Минлос.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ИНТЕГРАЛ ПО ТРАЕКТОРИЯМ" в других словарях:

  • Формулировка через интеграл по траекториям — Формулировка через интеграл по траеториям квантовой механики  это описание квантовой теории, которое обобщает принцип действия классической механики. Оно замещает классическое обозначение одиночной, уникальной траектории для системы суммой, или… …   Википедия

  • Интеграл (значения) — Интеграл (см. также Первообразная, Численное интегрирование, Интегрирование по частям) математический оператор: Определённый интеграл Неопределённый интеграл различные определения интегралов: Интеграл расширение понятия суммы Интеграл Ито… …   Википедия

  • Интеграл Фейнмана — Формулой Фейнмана называется представление решения задачи Коши для уравнения Шредингера с помощью предела интегралов по декартовым степеням конфигурационного или фазового пространства, когда кратность интегралов стремится к бесконечности; так же… …   Википедия

  • Формулировка через интегралы по траекториям — ВНИМАНИЕ. Статья не полностью отражает современное состояние вопроса, содержит существенные пробелы и неточности. //7 янв 2010 Квантовая механика Принцип неопределённости Гейзенберга …   Википедия

  • Формулировка квантовой теории через интегралы по траекториям — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. ВНИМАНИЕ. Стат …   Википедия

  • Функциональный интеграл — (континуальный интеграл, интеграл по траекториям, фейнмановский интеграл по траекториям)  запись или результат функционального интегрирования (интегрирования по траекториям). Находит наибольшее применение в квантовой физике (квантовой теории …   Википедия

  • КОНТИНУАЛЬНЫЙ ИНТЕГРАЛ — см. Интеграл по траекториям …   Математическая энциклопедия

  • Фазовый интеграл — (англ. Phase Integral)  один из фундаментальных интегралов квантовой механики, впервые предложенный Фейнманом в начале 60 х годов XX века. Подобно интегралу по траекториям, этот интеграл позволяет находить смещение фазы, обусловленное… …   Википедия

  • МУЛЬТИПЛИКАТИВНЫЙ ИНТЕГРАЛ — предел произведений вида где непрерывная на отрезке функция со значениями в пространстве ограниченных операторов в банаховом пространстве разбиение отрезка точками Предел берется, когда диаметр разбиения и обозначается Если операторы …   Математическая энциклопедия

  • ФЕЙНМАНА ИНТЕГРАЛ — собирательное название для представлений в виде континуального интеграла, или интеграла по траекториям, переходных функций (функций Грина) того или иного эволюционного процесса. Пусть дано уравнение где Т>0, а функция, определенная на множестве… …   Математическая энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.