ИЗОТРОПИИ ГРУППА это:

ИЗОТРОПИИ ГРУППА

- множество Gx таких элементов заданной группы G, действующей на нек-ром множестве Мкак группа преобразований, к-рые оставляют неподвижной точку х. Это множество оказывается подгруппой в Gи наз. группой изотропии точки х. В этом же смысле употребляются термины: стационарная подгруппа, стабилизатор, G-централизатор. Если Мявляется топологич. хаусдорфовым пространством и G - топологич. группой, непрерывно действующей на М, то Gx есть замкнутая подгруппа. Если при этом Ми Gлокально компактны, Gимеет счетную базу и действует на Мтранзитивно, то существует естественный гомеоморфизм между пространством Ми топологич. фактор-пространством G/H, где Н- одна из И. г.; с ней изоморфны все Gx,

Пусть М- гладкое многообразие и G- группа Ли, гладко действующая на М. Тогда И. г. Gx точки хОМиндуцирует нек-рую группу линейных преобразований касательного векторного пространства Т x (М);эта последняя группа наз. линейной группой изотропии в точке х. При переходе к касательным пространствам высшего порядка в точке хполучаются естественные представления И. г. в структурных группах соответствующих касательных расслоений высшего порядка; они наз. группами изотропии высшего порядка (см. также Изотропии представление).

Лит.:[1] Понтрягин Л. С, Непрерывные группы, 3 изд., М., 1973; [2] Xелгасон С, Дифференциальная геометрия и симметрические пространства, пер. с англ., М., 1964; [3] Зуланке Р., Винтген П., Дифференциальная геометрия и расслоения, пер. с нем., М., 1975.

Ю. Г. Лумисте.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ИЗОТРОПИИ ГРУППА" в других словарях:

  • ИЗОТРОПИИ ПРЕДСТАВЛЕНИЕ — естественное линейное представление изотропии группы в касательном пространстве к многообразию. Если G группа дифференцируемых преобразований многообразия Ми Gx соответствующая группа изотропии в точке хО М, то И. п. Isx: сопоставляет каждому hО… …   Математическая энциклопедия

  • ЛИ ГРУППА ПРЕОБРАЗОВАНИЙ — гладкое действие связной группы Ли Gна гладком многообразии М, т. е. гладкое (класса ) отображение . такое, что: (е единица группы G). Ли г. п., удовлетворяющая также условию: наз. эффективной. Примеры Ли г. п. Любое гладкое линейное… …   Математическая энциклопедия

  • СТАЦИОНАРНАЯ ПОДГРУППА — то же, что изотропии группа …   Математическая энциклопедия

  • ПСЕВДОГРУППА — преобразований дифференцируемого многообразия М семейство диффеоморфизмов открытых подмножеств многообразия Мв М, замкнутое относительно композиции отображений, перехода к обратному отображению, а также сужения и склейки отображений. Точнее,… …   Математическая энциклопедия

  • РЕДУКТИВНОЕ ПРОСТРАНСТВО — такое однородное пространство G/Hсвязной группы Ли G, что в алгебре Ли группы G существует (H) инвариантное подпространство, дополнительное к подалгебре , являющейся алгеброй Ли группы H. Выполнение любого из следующих условий достаточно для того …   Математическая энциклопедия

  • ОДНОРОДНОЕ ПРОСТРАНСТВО — множество вместе с заданным на нем транзитивным действием нек рой группы. Точнее, Месть однородное пространство группы G, если задано отображение множества в Мтакое, что: 1) 2) 3)для любых существует такой что Элементы множества Мназ. точками О.… …   Математическая энциклопедия

  • ИНВАРИАНТНАЯ МЕТРИКА — риманова метрика mна многообразии М, не изменяющаяся при всех преобразованиях из данной группы Ли G преобразований. Сама группа G при этом наз. группой движений (изометрий) метрики m(или риманова пространства ( М, т)). Группа Ли G преобразований… …   Математическая энциклопедия

  • Вселенная — Крупномасштабная структура Вселенной как она выглядит в инфракрасных лучах с длиной волны 2,2 мкм  1 600 000 галактик, зарегистри …   Википедия

  • ОДНОРОДНОЕ ПРОСТРАНСТВО АЛГЕБРАИЧЕСКОЙ ГРУППЫ — алгебраическое многообразие Мвместе с заданным на нем регулярным и транзитивным действием алгебраич. группы G. Если , то изотропии группа замкнута в G. Обратно, если Н замкнутая подгруппа нек рой алгебраич. группы G, то на множестве левых смежных …   Математическая энциклопедия

  • РИМАНОВО ПРОСТРАНСТВО ОДНОРОДНОЕ — риманово пространство ( М,g) вместе с транзитивной эффективной группой Gего движений. Пусть K стационарная подгруппа фиксированной точки Тогда многообразие Мотождествляется с факторпространством G/K с помощью биекции , а риманова метрика g… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»