Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.


Гаусс

Перевод
Гаусс
I Га́усс (Gauss)
        Карл Фридрих (30.4.1777, Брауншвейг, — 23.2.1855, Гёттинген), немецкий математик, внёсший фундаментальный вклад также в астрономию и геодезию. Родился в семье водопроводчика. С 1795 по 1798 учился в Гёттингенском университете. В 1799 получил доцентуру в Брауншвейге, в 1807 — кафедру математики и астрономии в Гёттингенском университете, с которой была также связана должность директора Гёттингенской астрономической обсерватории. На этом посту Г. оставался до конца жизни. Отличительными чертами творчества Г. являются глубокая органическая связь в его исследованиях между теоретической и прикладной математикой, необычайная широта проблематики. Работы Г. оказали большое влияние на развитие высшей алгебры, теории чисел, дифференциальной геометрии, теории притяжения, классической теории электричества и магнетизма, геодезии, целых отраслей теоретической астрономии. Во многих областях математики труды Г. содействовали повышению требований к логической отчётливости доказательств, однако сам Г. оставался в стороне от работ по строгому обоснованию математического анализа, которые проводил в его время О. Коши.
         Первое крупное сочинение Г. по теории чисел и высшей алгебре — «Арифметические исследования» (1801) — во многом предопределило дальнейшее развитие этих дисциплин. Г. даёт здесь обстоятельную теорию квадратичных вычетов (См. Квадратичный вычет), первое доказательство квадратичного закона взаимности — одной из центральных теорем теории чисел. Г. даёт также новое подробное изложение арифметической теории квадратичных форм, до того построенной Ж. Лагранжем, в частности тщательную разработку теории композиции классов таких форм. В конце книги излагается теория уравнений деления круга (т. е. уравнений xn 1 = 0), которая во многом была прообразом Галуа теории (См. Галуа теория). Помимо общих методов решения этих уравнений, Г. установил связь между ними и построением правильных многоугольников. Он, впервые после древнегреческих учёных, сделал значительный шаг вперёд в этом вопросе, а именно: Г. нашёл все те значения n, для которых правильный n-угольник можно построить циркулем и линейкой; в частности, решив уравнение х171 = 0, он дал построение правильного 17-угольника при помощи циркуля и линейки. Г. придавал этому открытию очень большое значение и завещал выгравировать правильный 17-угольник, вписанный в круг, на своём надгробном памятнике, что и было исполнено.
         Астрономические работы Г. (1800—20) в основном связаны с решением проблемы определения орбит малых планет и исследованием их возмущений. Г. как астроном получил широкую известность после разработки метода вычисления эллиптических орбит планет по трём наблюдениям, успешно примененного им к первым открытым малым планетам Церера (1801) и Паллада (1802). Результаты исследований по вычислению орбит Г. опубликовал в сочинении «Теория движения небесных тел» (1809). В 1794—95 открыл и в 1821—23 разработал основной математический метод обработки неравноценных наблюдательных данных (Наименьших квадратов метод). В связи с астрономическими вычислениями, основанными на разложении интегралов соответствующих дифференциальных уравнений в бесконечные ряды, Г. занялся исследованием вопроса о сходимости бесконечных рядов [в работе, посвященной изучению гипергеометрического ряда (См. Гипергеометрический ряд) (1812)].
         Работы Г. по геодезии (1820—30) связаны с поручением провести геодезическую съёмку и составить детальную карту Ганноверского королевства; Г. организовал измерение дуги меридиана Гёттинген — Альтона, в результате теоретической разработки проблемы создал основы высшей геодезии («Исследования о предметах высшей геодезии», 1842—47). Для оптической сигнализации Г. изобрёл специальный прибор — Гелиотроп. Изучение формы земной поверхности потребовало углублённого общего геометрического метода для исследования поверхностей. Выдвинутые Г. в этой области идеи получили выражение в сочинении «Общие изыскания о кривых поверхностях» (1827). Руководящая мысль этого сочинения заключается в том, что при изучении поверхности как бесконечно тонкой гибкой плёнки основное значение имеет не уравнение поверхности в декартовых координатах, а дифференциальная квадратичная форма, через которую выражается квадрат элемента длины и инвариантами которой являются все собственные свойства поверхности — прежде всего её кривизна в каждой точке. Др. словами, Г. предложил рассматривать те свойства поверхности (т. н. внутренние), которые не зависят от изгибаний поверхности, не изменяющих длин линий на ней. Созданная таким образом внутренняя геометрия поверхностей послужила образцом для создания n-mepной римановой геометрии (См. Риманова геометрия).
         Исследования Г. по теоретической физике (1830—40) являются в значительной мере результатом тесного общения и совместной научной работы с В. Вебером. Вместе с Вебером Г. создал абсолютную систему электромагнитных единиц и сконструировал в 1833 первый в Германии электромагнитный телеграф. В 1835 Г. основал магнитную обсерваторию при Гёттингенской астрономической обсерватории. В 1838 он издал труд «Общая теория земного магнетизма». Небольшое сочинение «О силах, действующих обратно пропорционально квадрату расстояния» (1834—40) содержит основы теории потенциала. К теоретической физике примыкают также разработка (1829) Г. принципа наименьшего принуждения (см. Гаусса принцип) и работы по теории капиллярности (1830). К числу физических исследований Г. относятся и его «Диоптрические исследования» (1840), в которых он заложил основы теории построения изображения в системах линз.
         Очень многие исследования Г. остались неопубликованными и в виде очерков, незаконченных работ, переписки с друзьями входят в его научное наследие. Вплоть до 2-й мировой войны оно тщательно разрабатывалось Гёттингенским учёным обществом, которое издало 12 тт. сочинений Г. Наиболее интересными в этом наследии являются дневник Г. и материалы по неевклидовой геометрии и теории эллиптических функций. Дневник содержит 146 записей, относящихся к периоду от 30 марта 1796, когда 19-летний Г. отметил открытие построения правильного 17-угольника, по 9 июля 1814. Эти записи дают отчётливую картину творчества Г. в первой половине его научной деятельности; они очень кратки, написаны на латинском языке и излагают обычно сущность открытых теорем. Материалы, относящиеся к неевклидовой геометрии, обнаруживают, что Г. пришёл к мысли о возможности построения наряду с евклидовой геометрией и геометрии неевклидовой в 1818, но опасение, что эти идеи не будут поняты, и, по-видимому, недостаточное сознание их научной важности были причиной того, что Г. их не разрабатывал далее и не опубликовывал. Более того, он категорически запрещал опубликовывать их тем, кого посвящал в свои взгляды. Когда вне всякого отношения к этим попыткам Г. неевклидова геометрия была построена и опубликована Н. И. Лобачевским (См. Лобачевский), Г. отнёсся к публикациям Лобачевского с большим вниманием, был инициатором избрания его член-корреспондентом Гёттингенского учёного общества, но своей оценки великого открытия Лобачевского по существу не дал. Архивы Г. содержат также обильные материалы по теории эллиптических функций и своеобразную их теорию; однако заслуга самостоятельной разработки и публикации теории эллиптических функций принадлежит К. Якоби и Н. Абелю (См. Абель).
         Соч.: Werke, Bd 1 —, Gött., 1908 —; в рус. пер. — Общие исследования о кривых поверхностях, в сборнике: Об основаниях геометрии, 2 изд., Каз., 1895; Теоретическая астрономия. (Лекции, читанные в Гёттингене в 1820—26 гг., записанные Купфером), в кн.: Крылов А. Н., Собр. трудов, т. 6, М. — Л., 1936; Письма П. С. Лапласа, К. Ф. Гаусса, Ф. В. Бесселя и др. к академику Ф. И. Шуберту, в сборнике: Научное наследство, т 1, М. — Л., 1948, с. 801—22.
         Лит.: Клейн Ф., Лекции о развитии математики в 19 столетии, пер. с нем., ч. 1, М. — Л., 1937: Карл Фридрих Гаусс. Сб. ст., М., 1956.
        К. Ф. Гаусс.
        К. Ф. Гаусс.
II Га́усс
        единица магнитной индукции в СГС системе единиц (См. СГС система единиц) (гауссовой и СГСМ). Названа в честь К. Гаусса. Сокращённое обозначение: русское гс, международное Gs. 1 гс равен индукции однородного магнитного поля, в котором прямой проводник длиной 1 см, расположенный перпендикулярно вектору индукции поля, испытывает силу в 1 дин, если по этому проводнику протекает ток в 1 единицу тока СГСМ. Г. также можно определить как магнитную индукцию, при которой через сечение площадью в 1 см, нормальное к направлению линий индукции, проходит магнитный поток в 1 максвелл. Соотношение между единицами магнитной индукции СГС и СИ: 1 тл = 104 гс. На практике применяют ещё единицу килогаусс = 1000 гс. До 1930 Г. называли также единицу напряжённости магнитного поля, равную 79,577 а/м. В 1930 решением Международной электротехнической комиссии для напряжённости магнитного поля была принята особая единица эрстед.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

См. также в других словарях:

  • Гаусс — Гаусс: Гаусс, Карл Фридрих  немецкий математик, физик и астроном Гаусс  единица магнитной индукции в системе СГС Гаусс  кратер на Луне Вулкан Гаусс  вулкан в Антарктике гаусс  жаргонное название пушки Гаусса GAUSS … …   Википедия

  • ГАУСС — (Gauss) Карл Фридрих (1777 1855), немецкий математик. В детстве был необыкновенно одаренным ребенком, из бедной семьи. Его образование оплачивал богатый аристократ герцог Брауншвейгский, который узнал о нем от его учителя. Еще в подростковом… …   Научно-технический энциклопедический словарь

  • ГАУСС — (Гс, Gs), единица магн. индукции в СГС системе единиц (симметричной, или Гауссовой) и СГСМ. Названа в честь нем. учёного К. Ф. Гаусса (К. F. Gau8). 1 Гс=10 4 тесла. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный… …   Физическая энциклопедия

  • Гаусс — (Carl Friedrich Gauss) знаменитый немецкий математик. Род. 23апреля 1777 года в Брауншвейге и с раннего возраста обнаружил выдающиесяматематические способности. Рассказывают, что, будучи трех лет, Г. решалчисловые задачи и любил чертить… …   Энциклопедия Брокгауза и Ефрона

  • ГАУСС — (Gaub) Карл Фридрих (1777 1855), немецкий ученый. Для творчества Гаусса характерны органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры, теории чисел,… …   Современная энциклопедия

  • ГАУСС — единица магнитной индукции в СГС системе единиц. Названа в честь К. Гаусса, обозначается Гс. 1 Гс=10 4 тесла …   Большой Энциклопедический словарь

  • ГАУСС — (Gauss) Герман (род. 4 мая 1902, Листаль) – швейц. философ, проф. Базельского и Бернского ун тов, ученик Г.Шмаленбаха. Занимался исследованиями трудов Платона и систематизацией всей послеплатоновской философии. Осн. труды: «Plato s conception of… …   Философская энциклопедия

  • гаусс — сущ., кол во синонимов: 1 • единица (830) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • гаусс — (по имени нем. математика Гаусса (Gauss), 1777 1855) единица магнитной индукции в СГС (гауссовой и СГСМ) системе единиц, обозначается гс, gs. Новый словарь иностранных слов. by EdwART, , 2009. гаусс а, род. мн. гауссов и гаусс, м. (нем. Gauss по… …   Словарь иностранных слов русского языка

  • Гаусс — (Carl Friedrich Gauss) знаменитый немецкий математик. Род. 28 апреля 1777 года в Брауншвейге и с раннего возраста обнаружил выдающиеся математические способности. Рассказывают, что, будучи трех лет, Г. решал числовые задачи и любил чертить… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Фильмы

  • Исповедь разведчика., 1990 — О сыне всемирно известного писателя- антифашиста Фридриха Вольфа Маркусе Вольфе, разведчике №1 Восточного блока в ГДР.