Гипергеометрический ряд это:

Гипергеометрический ряд
        ряд вида
        
         Г. р. был впервые изучен Л. Эйлером (1778). Разложение многих функций в бесконечные ряды представляет собой частные случаи Г. р. Например:
         (1 + z) n = F (—n, β; β; —z),
         ln (1 + z) = zF (1, 1; 2; —z),
        
         Г. р. имеет смысл, если γ не равно нулю или целому отрицательному числу; он сходится при |z| < 1. Если, кроме того, γ—α—β >0, то Г. р. сходится и при z = 1. В этом случае справедлива формула Гаусса:
         F (α, β; γ; 1) = Γ(γ)Γ(γ—α—β)/Γ(γ—α)Γ(γ—β),
         где Г (z) — Гамма-функция. Аналитическая функция, определяемая для |z| < 1 с помощью Г. р., называется гипергеометрической функцией (См. Гипергеометрические функции) и играет важную роль в теории дифференциальных уравнений.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Гипергеометрический ряд" в других словарях:

  • гипергеометрический ряд — hipergeometrinė eilutė statusas T sritis fizika atitikmenys: angl. hypergeometric series vok. hypergeometrische Reihe, f rus. гипергеометрический ряд, m pranc. série hypergéométrique, f …   Fizikos terminų žodynas

  • ГИПЕРГЕОМЕТРИЧЕСКИЙ РЯД — ряд Гаусса, ряд вида Г. р. имеет смысл, если g не равно нулю или целому отрицательному числу; он сходится при . Если, кроме того, то Г. р. сходится и при z= 1. В этом случае справедлива формула Гаусса где Г (z) гамма функция. Аналитич. функция,… …   Математическая энциклопедия

  • Функции Бесселя — в математике  семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя: где   произвольное вещественное число, называемое порядком. Наиболее часто используемые функции Бесселя  функции целых… …   Википедия

  • Бесселевы функции — Функции Бесселя в математике  семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя: где α  произвольное действительное число, называемое порядком. Наиболее часто используемые функции Бесселя  функции целых… …   Википедия

  • Бесселя функции — Функции Бесселя в математике  семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя: где α  произвольное действительное число, называемое порядком. Наиболее часто используемые функции Бесселя  функции целых… …   Википедия

  • Функция Бесселя — Функции Бесселя в математике  семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя: где α  произвольное действительное число, называемое порядком. Наиболее часто используемые функции Бесселя  функции целых… …   Википедия

  • Функция Неймана — Функции Бесселя в математике  семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя: где α  произвольное действительное число, называемое порядком. Наиболее часто используемые функции Бесселя  функции целых… …   Википедия

  • Гипергеометрическая функция — (функция Гаусса) определяется внутри круга как сумма гипергеометрического ряда а при   как её аналитическое продолжение. Она является решением линейного обыкновенного дифференциального уравнения (ОДУ) второго порядка называемого… …   Википедия

  • Гаусса формулы —         формулы, относящиеся к различным разделам математики и носящие имя К. Гаусса.          1) Квадратурные Г. ф. формулы вида                   в которых узлы xk и коэффициенты Ak не зависят от функции f (x) и выбраны так, что формула точна… …   Большая советская энциклопедия

  • Гипергеометрические функции —         аналитические функции, определяемые для |z| …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»