Открытое множество это:

Открытое множество
        точечное множество, не содержащее предельных точек (См. Предельная точка) дополнительного к нему множества (см. Множеств теория). Любая точка О. м. является внутренней, т. е. имеет Окрестность, содержащуюся целиком в О. м. Наряду с замкнутыми множествами (См. Замкнутые множества) О. м. играют важную роль в теории функций, топологии и др. отделах математики. Всякое (не пустое) О. м. на прямой является интервалом или суммой не более чем счётного числа интервалов.
         О. м. можно рассматривать в евклидовом пространстве (См. Евклидово пространство) любого числа измерений, а также в произвольном метрическом пространстве (См. Метрическое пространство) или топологическом пространстве (См. Топологическое пространство). Пересечение конечного числа и сумма любого числа О. м. являются О. м. Связные О. м. называются областями (См. Область). Любое топологическое пространство может быть определено заданием своих О. м. Если же топологическое пространство задано системой своих замкнутых множеств, то О. м. определяются в нём как множества, дополнительные к замкнутым.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Открытое множество" в других словарях:

  • Открытое множество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью. Открытое множество является фундаментальным понятием общей топологии. Термин «открытое множество» применяется к подмножествам топологических пространств и никак …   Википедия

  • ОТКРЫТОЕ МНОЖЕСТВО — топологического пространства элемент топологии этого пространства. Подробнее, пусть топология t топологич. пространства (X, t) определяется как такая система т подмножеств множества X, что: 1) 2) если i=l, 2, то , 3) если , то ; тогда открытыми… …   Математическая энциклопедия

  • Открытое множество (топология) — Открытое множество в математическом анализе, геометрии это множество, каждая точка которого входит в него вместе с некоторой окрестностью. Открытое множество также является фундаментальным понятием общей топологии. Термин «открытое множество»… …   Википедия

  • Множество Жюлиа — Множество Жюлиа. Точнее, это не само множество (которое в данном случае состоит из несвязных точек и не может быть нарисовано), а точки из его окрестности. Чем ярче точка, тем ближе она к множеству Жюлиа и тем больше итераций ей нужно, чтобы уйти …   Википедия

  • Множество Джулия — Множество Жюлиа Множество Жюлиа В голоморфной динамике, множество Жюлиа рационального отображения …   Википедия

  • Множество Фату — Множество Жюлиа Множество Жюлиа В голоморфной динамике, множество Жюлиа рационального отображения …   Википедия

  • Открытое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Множество второй категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Множество первой категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Открытое подмножество — Открытое множество в математическом анализе, геометрии это множество, каждая точка которого входит в него вместе с некоторой окрестностью. Открытое множество также является фундаментальным понятием общей топологии. Термин «открытое множество»… …   Википедия

Книги

Другие книги по запросу «Открытое множество» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»