Замкнутые множества это:

Замкнутые множества
(математические)
        точечные множества на прямой, в плоскости или в пространстве, содержащие все свои прикосновения точки (См. Прикосновения точка). При этом точкой прикосновения множества Е называется такая точка (не обязательно принадлежащая Е), что в любой её окрестности имеется по крайней мере одна точка из Е. Примером З. м. может служить геометрическая фигура (круг, квадрат и т.д.), рассматриваемая вместе со своими граничными точками. Объединение конечного числа и пересечение любого числа З. м. снова будет З. м. Дополнение любого З. м. является открытым множеством (См. Открытое множество) и наоборот. Наряду с открытыми множествами З. м. являются простейшими типами точечных множеств и играют важную роль в теории функций и, в частности, в теории меры (см. Меры теория). Среди З. м. особенно выделяются благодаря своим замечательным свойствам совершенные множеств а, т. е. З. м., не имеющие изолированных точек (см., например, Кантора множество).
         Определение З. м. сохраняется также для множеств в произвольных метрических и топологических пространствах. При этом для множеств в метрических пространствах оно равносильно тому, что З. м. это множество, содержащее все свои предельные точки (См. Предельная точка).
        
         Лит.: Александров П. С., Введение в общую теорию множеств и функций, М. — Л., 1948; Рудин У., Основы математического анализа, пер. с англ., М., 1966.
         С. Б. Стечкин.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Замкнутые множества" в других словарях:

  • Замкнутые классы булевых функций — Замкнутый класс в теории булевых функций  такое множество функций алгебры логики, замыкание которого относительно операции суперпозиции совпадает с ним самим: . Другими словами, любая функция, которую можно выразить формулой с использованием …   Википедия

  • Измеримые множества — (в первоначальном понимании)         множества, к которым применимо данное французским математиком А. Лебегом определение меры (см. Мера множества). И. м. одно из основных понятий теории функций действительного переменного (см. Функций теория),… …   Большая советская энциклопедия

  • ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО — совокупность двух объектов: множества X, состоящего из элементов произвольной природы, наз. точками данного пространства, и из введенной в это множество топологической структуры, или топологии, все равно открытой или замкнутой (одна переходит в… …   Математическая энциклопедия

  • Булева функция — В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок …   Википедия

  • Булевы выражения — В теории дискретных функциональных систем булевой функцией называют функцию типа , где булево множество, а n неотрицательное целое число, которое называют арностью или местностью функции. Элементы 1 (единица) и 0 (ноль) стандартно интерпретируют… …   Википедия

  • БОРЕЛЕВСКОЕ МНОЖЕСТВО — B множество, множество, к рое может быть получено в результате не более чем счетной совокупности операций объединения и пересечения открытых и замкнутых множеств топологич. пространства. Более точно, борелевским множеством наз. элемент… …   Математическая энциклопедия

  • ОТДЕЛИМОСТИ АКСИОМА — условие, налагаемое на топологич. пространство и выражающее требование, чтобы те или иные дизъюнктные, т. е. не имеющие общих точек, множества были в нек ром определенном смысле топологически отделены друг от друга. Простейшие, т. е. самые слабые …   Математическая энциклопедия

  • НОРМАЛЬНОЕ ПРОСТРАНСТВО — топологическое пространство, удовлетворяющее аксиоме (см. Отделимости аксиома), т. е. такое топологич. пространство, в к ром одноточечные множества замкнуты и любые два дизъюнктные замкнутые множества отделимы окрестностями (т. е. содержатся в… …   Математическая энциклопедия

  • Множеств теория —         учение об общих свойствах множеств, преимущественно бесконечных. Понятие множества, или совокупности, принадлежит к числу простейших математических понятий; оно не определяется, но может быть пояснено при помощи примеров. Так, можно… …   Большая советская энциклопедия

  • ТОПОЛОГИЧЕСКОЕ ПРОИЗВЕДЕНИЕ — тихоновскоe произведение, семейства топологических пространств топологич. пространство где X декартово произведение (т. е. полное прямое произведение) множеств по и слабейшая (т. е. наименьшая) топология на множестве Xтакая, что все отображения… …   Математическая энциклопедия

Книги

Другие книги по запросу «Замкнутые множества» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»