- Кольцо главных идеалов
-
Кольцо главных идеалов — кольцо, каждый идеал которого является главным. В случае некоммутативного кольца различают кольцо главных правых идеалов и кольцо главных левых идеалов.
Примеры
- Все евклидовы кольца, в том числе, кольцо целых чисел
, являются кольцами главных идеалов.
- Пример кольца, не являющегося кольцом главных идеалов — кольцо многочленов
. В нём идеал, порождённый
не является главным, то есть, не может быть порождён одним элементом кольца.
Свойства
- Кольцо главных идеалов является нётеровым.
- Все кольца главных идеалов являются кольцами Безу.
Литература
- Винберг Э. Б. Курс алгебры. — 3-е изд. — М.: Факториал Пресс, 2002. — 544 с. — 3000 экз. — ISBN 5-88688-060-7
Категория:- Теория колец
- Все евклидовы кольца, в том числе, кольцо целых чисел
Wikimedia Foundation. 2010.