- Интерполяция
-
- О функции, см.: Интерполянт.
Интерполя́ция, интерполи́рование — в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.
Многим из тех, кто сталкивается с научными и инженерными расчётами часто приходится оперировать наборами значений, полученных опытным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.
Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.
Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов». К классическим работам по интерполяции операторов относятся теорема Рисса-Торина (Riesz-Thorin theorem) и теорема Марцинкевича (Marcinkiewicz theorem), являющиеся основой для множества других работ.
Содержание
Определения
Рассмотрим систему несовпадающих точек () из некоторой области . Пусть значения функции известны только в этих точках:
Задача интерполяции состоит в поиске такой функции из заданного класса функций, что
- Точки называют узлами интерполяции, а их совокупность — интерполяционной сеткой.
- Пары называют точками данных или базовыми точками.
- Разность между «соседними» значениями — шагом интерполяционной сетки. Он может быть как переменным, так и постоянным.
- Функцию — интерполирующей функцией или интерполянтом.
Пример
1. Пусть мы имеем табличную функцию, наподобие описанной ниже, которая для нескольких значений определяет соответствующие значения :
0 0 1 0,8415 2 0,9093 3 0,1411 4 −0,7568 5 −0,9589 6 −0,2794 Интерполяция помогает нам узнать какое значение может иметь такая функция в точке, отличной от указанных (например, при x = 2,5).
К настоящему времени существует множество различных способов интерполяции. Выбор наиболее подходящего алгоритма зависит от ответов на вопросы: как точен выбираемый метод, каковы затраты на его использование, насколько гладкой является интерполяционная функция, какого количества точек данных она требует и т. п.
2. Найти промежуточное значение (способом линейной интерполяции).6000 15.5 6378 ? 8000 19.2 Способы интерполяции
Интерполяция методом ближайшего соседа
Простейшим способом интерполяции является интерполяция методом ближайшего соседа.
Интерполяция многочленами
На практике чаще всего применяют интерполяцию многочленами. Это связано прежде всего с тем, что многочлены легко вычислять, легко аналитически находить их производные и множество многочленов плотно в пространстве непрерывных функций (теорема Вейерштрасса).
- Линейная интерполяция
- Интерполяционная формула Ньютона
- Метод конечных разностей
- ИМН-1 и ИМН-2
- Многочлен Лагранжа (интерполяционный многочлен)
- По схеме Эйткена
- Сплайн-функция
- Кубический сплайн
Обратное интерполирование (вычисление x при заданном y)
- Полином Лагранжа
- Обратное интерполирование по формуле Ньютона
- Обратное интерполирование по формуле Гаусса
Интерполяция функции нескольких переменных
Другие способы интерполяции
- Рациональная интерполяция
- Тригонометрическая интерполяция
Смежные концепции
- Экстраполяция — методы нахождения точек за пределами заданного интервала (продление кривой)
- Аппроксимация — методы построения приближённых кривых
См. также
- Регрессия (математика)
- Сглаживание данных эксперимента
Категории:- Интерполяция
- Регрессионный анализ
Wikimedia Foundation. 2010.