- Пифагоровы числа
-
Пифагоровы числа
В математике пифагоровыми числами (пифагоровой тройкой) называется кортеж из трёх целых чисел
удовлетворяющих соотношению Пифагора:
- x2 + y2 = z2.
Содержание
Свойства
Поскольку уравнение x2 + y2 = z2 однородно, при домножении x, y и z на одно и то же число получится другая пифагорова тройка. Пифагорова тройка называется примитивной, если она не может быть получена таким способом, то есть
— взаимно простые числа.
Треугольник, стороны которого равны пифагоровым числам, является прямоугольным. Кроме того, любой такой треугольник является героновым, то есть таким, у которого все стороны и площадь являются целочисленными. Простейший из них — египетский треугольник со сторонами 3, 4 и 5 (32 + 42 = 52).
Пифагорова тройка
задаёт точку с рациональными координатами
на единичной окружности x2 + y2 = 1.
Нетрудно видеть, что в примитивной тройке (x,y,z) числа x и y имеют разную чётность. Любая примитивная пифагорова тройка (x,y,z), где x - нечётно, а y - чётно, однозначно представляется в виде
для некоторых натуральных взаимно простых чисел m > n разной чётности. Наоборот, любая такая пара
задаёт примитивную пифагорову тройку
. [1]
Примеры
Некоторые пифагоровы тройки (отсортированы по возрастанию максимального числа, выделены примитивные):
(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (14, 48, 50), (30, 40, 50)…
Основываясь на свойствах чисел Фибоначчи, можно составить из них, например, такие пифагоровы тройки:
.
История
Пифагоровы тройки известны очень давно. В архитектуре древнемесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н. э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей.
См. также
Ссылки
- ↑ В. Н. Серпинский Пифагоровы треугольники. — М.: Учпедгиз, 1959. — 111 с.
- Е. А. Горин Степени простых чисел в составе пифагоровых троек // Математическое просвещение. — 2008. — В. 12. — С. 105-125.
Wikimedia Foundation. 2010.
ПИФАГОРОВЫ ЧИСЛА — тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Большой Энциклопедический словарь
Пифагоровы числа — тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, например тройка чисел: 3, 4, 5. * * * ПИФАГОРОВЫ ЧИСЛА ПИФАГОРОВЫ ЧИСЛА, тройки таких натуральных чисел, что… … Энциклопедический словарь
Пифагоровы числа — тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным. По теореме, обратной теореме Пифагора (см. Пифагора теорема), для этого достаточно, чтобы они… … Большая советская энциклопедия
ПИФАГОРОВЫ ЧИСЛА — тройки целых положительных чисел х, у,z, удовлетворяющих уравнению x2+у 2=z2. Все решения этого уравнения, а следовательно, и все П. ч. выражаются формулами х=а 2 b2, y=2ab, z=a2+b2, где а, b произвольные целые положительные числа ( а>b). П. ч … Математическая энциклопедия
ПИФАГОРОВЫ ЧИСЛА — тройки таких натуральных чисел, что треугольник, длины сторон к рого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Естествознание. Энциклопедический словарь
Пифагоровы тройки — В математике пифагоровыми числами (пифагоровой тройкой) называется кортеж из трёх целых чисел удовлетворяющих соотношению Пифагора: x2 + y2 = z2. Содержание 1 Свойства 2 Примеры … Википедия
Фигурные числа — Фигурные числа общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие восходит к пифагорейцам. Предположительно от фигурных чисел возникло выражение: «Возвести число в квадрат или в куб». Содержание… … Википедия
Многоугольные числа — Фигурные числа общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие восходит к пифагорейцам. Различают следующие виды фигурных чисел: Линейные числа числа, не разлагающиеся на сомножители, то есть их… … Википедия
Парадокс числа Пи — «Парадокс числа пи» шутка на тему математики, имевшая хождение в среде студентов до 80 х годов (фактически, до массового распространения микрокалькуляторов) и была связана с ограниченной точностью вычислений тригонометрических функций и… … Википедия
Арифметика — (греч. arithmetika, от arithmys число) наука о числах, в первую очередь о натуральных (целых положительных) числах и (рациональных) дробях, и действиях над ними. Владение достаточно развитым понятием натурального числа и умение… … Большая советская энциклопедия