Число Штифеля

Число Штифеля

Класс Штифеля — Уитни — определённый характеристический класс, соответствующий вещественному векторному расслоению E\rightarrow X. Обычно обозначается через w(E). Принимает значения в H^*(X;\;\Z_2), кольце когомологий с коэффициентами в \Z_2=\Z/2\Z.

Компонента w(E) в i-ых когомологиях H^i(X;\;\Z_2) обозначается wi(E) и называется i-ым классом Штифеля — Уитни расслоения E, так что

w(E)=w_0(E)+w_1(E)+w_2(E)+\ldots\,.

Классы wi(E) являются препятствиями в H^i(X;\;\Z_2) к построению (ni + 1)-го линейно независимого сечения E, ограниченного на i-ый остов X.

Содержание

Аксиоматическое определение

Здесь и далее, H^i(X;\;G) обозначает сингулярные когомологии пространства X с коэффициентами в группе G.

Класс Штифеля — Уитни определяется как отображение, сопоставляющее расслоению E элемент кольца гомологий w(E) так, что выполняются следующие аксиомы:

  1. Естественность: w(f * E) = f * w(E) для любого расслоения E\to X и отображения f:X'\to X, где f * E обозначает соответствующее индуцированное расслоение над X'.
  2. w0(E) = 1 в H^0(X;\;\Z/2\Z).
  3. w11) является образующей H^1(\R P^1;\;\Z/2\Z)\cong\Z/2\Z (условие нормализации). Здесь γ1 — это тавтологическое расслоение.
  4. w(E\oplus F)= w(E)\smallsmile w(F) (формула произведения Уитни).

Можно показать, что удовлетворяющие этим аксиомам классы действительно существуют и единственны (по крайней мере, для паракомпактного пространства X)[1]

Исходное построение

Классы Штифеля — Уитни wi(E) были открыты Штифелем и Уитни как приведение по модулю 2 классов, измеряющих препятствия к построению (ni + 1)-го линейно независимого сечения E, ограниченного на i-ый остов X. (Здесь n — размерность слоя F расслоения E).

Более точно, если X является CW-комплексом, Уитни определил классы Wi(E) в i-й группе клеточных когомологий X с нестандартными коэффициентами.

А именно, в качестве коэффициентов берётся (i − 1)гомотопическая группа многообразия Штифеля Vni + 1(F) наборов из ni + 1 линейно независимого вектора в слое F. Уитни доказал, что для построенных им классов Wi(E) = 0 тогда и только тогда, когда расслоение E, ограниченное на i-скелет X, имеет ni + 1 линейно независимое сечение.

Поскольку гомотопическая группа πi − 1Vni + 1(F) многообразия Штифеля всегда или бесконечная циклическая, или изоморфна \Z_2, существует каноническая редукция классов Wi(E) к классам w_i(E)\in H^i(X;\;\Z_2), которые и называются классами Штифеля — Уитни.

В частности, если \pi_{i-1}V_{n-i+1}(F)=\Z_2, то эти классы просто совпадают.

Связанные определения

  • Если мы работаем на многообразии размерности n, то любое произведение классов Штифеля — Уитни общей степени n может быть спарено с \Z_2-фундаментальным классом этого многообразия, давая в результате элемент \Z_2; такие числа называют числами Штифеля — Уитни векторного расслоения. К примеру, для расслоения на трёхмерном многообразии есть три линейно независимых числа Штифеля — Уитни, соответствующие w_1^3, w1w2 и w3. В общем случае, если многообразие n-мерно, различные числа Штифеля — Уитни соответствуют разбиениям n в сумму целых слагаемых.
    • Числа Штифеля — Уитни касательного расслоения к гладкому многообразию называются числами Штифеля — Уитни этого многообразия. Они являются инвариантами кобордизма.
  • Естественному отображению приведения по модулю два, \Z\to\Z_2, соответствует гомоморфизм Бокштейна
    \beta\colon H^i(X;\;\Z_2)\to H^{i+1}(X;\;\Z).
Образ класса wi под его действием, \beta w_i\in H^{i+1}(X;\;\Z), называется (i + 1)-ым целым классом Штифеля — Уитни.
  • В частности, третий целый класс Штифеля — Уитни является препятствием к построению SpinC-структуры.

Свойства

  • Если расслоение Ek имеет s_1,\;\ldots,\;s_\ell сечений, линейно независимых над каждой точкой, то w_{k-\ell+1}=\ldots=w_k=0.
  • wi(E) = 0 при i > rank(E).
  • Первый класс Штифеля — Уитни обращается в ноль тогда и только тогда, когда расслоение ориентируемо. В частности, многообразие M ориентируемо тогда и только тогда, когда w1(TM) = 0.
  • Расслоение допускает спинорную структуру, тогда и только тогда, когда первый и второй классы Штифеля — Уитни оба обращаются в ноль.
  • Для ориентируемого расслоения, второй класс Штифеля — Уитни лежит в образе естественного отображения H^2(M,\;\Z)\to H^2(M,\;\Z_2) (или, что то же самое, так называемый третий целый класс Штифеля — Уитни обращается в ноль) тогда и только тогда, когда расслоение допускает SpinC-структуру.
  • Все числа Штифеля — Уитни гладкого компактного многообразия X обращаются в ноль тогда и только тогда, когда это многообразие является границей (без учёта ориентации) гладкого компактного многообразия.

Литература

  • Прасолов В. В. Элементы теории гомологий.
  • Husemoller D. Fibre Bundles. — Springer-Verlag, 1994.
  • Милнор Дж., Сташев Дж. Характеристические классы. — М.: Мир, 1979. — 371 с.

Примечания

  1. см. разделы 3.5 и 3.6 книги Хюсмоллера или раздел 8 в Милноре — Сташеве.



Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Число Штифеля" в других словарях:

  • Число Штифеля—Уитни — Класс Штифеля  Уитни  определённый характеристический класс, соответствующий вещественному векторному расслоению . Обычно обозначается через w(E). Принимает значения в , кольце когомологий с коэффициентами в . Компонента w(E) в i ых когомологиях… …   Википедия

  • Число Штифеля — Уитни — Класс Штифеля  Уитни  определённый характеристический класс, соответствующий вещественному векторному расслоению . Обычно обозначается через w(E). Принимает значения в , кольце когомологий с коэффициентами в . Компонента w(E) в i ых когомологиях… …   Википедия

  • Число Понтрягина — ― характеристическое число, определенное для вещественных замкнутых многообразий и принимающее рациональные значения. Определение Пусть M есть 4n мерное гладкое замкнутое многообразие и ― разбиение числа , то есть набор натуральных чисел, таких… …   Википедия

  • ШТИФEЛЯ ЧИСЛО — характеристическое число замкнутого многообразия, принимающее значения вычетов по модулю 2. Пусть произвольный стабильный характеристич. класс, М замкнутое многообразие. Вычет по модулю 2, определяемый равенством наз. числом Штифеля (или Штифеля… …   Математическая энциклопедия

  • ПОНТРЯГИНА ЧИСЛО — характеристическое число, определенное для действительных замкнутых многообразий и принимающее рациональные значения. Пусть произвольный (необязательно однородный) стабильный характеристический класс. Для замкнутого ориентированного многообразия… …   Математическая энциклопедия

  • ХОПФА ИНВАРИАНТ — инвариант гомотопич. класса отображений топологич. пространств. Впервые был определенX. Хопфом ([1], [2]) для отображений сфер Пусть непрерывное отображение. Переходя, если нужно, к гомотопному отображению, можно считать это отображение… …   Математическая энциклопедия

  • ЛОГАРИФМ — число, применение которого позволяет упростить многие сложные операции арифметики. Использование в вычислениях вместо чисел их логарифмов позволяет заменить умножение более простой операцией сложения, деление вычитанием, возведение в степень… …   Энциклопедия Кольера

  • КОБОРДИЗМ — кобордизмов теория, обобщенная теория когомологий, определенная спектрами пространств Тома и связанная с различными структурами в стабильном касательном или нормальном расслоении к многообразию. Теория К. двойственна (в смысле S двойственности… …   Математическая энциклопедия

  • Знаки математические —         условные обозначения, предназначенные для записи математических понятий, предложений и выкладок. Например, √2         (квадратный корень из двух), 3 > 2 (три больше двух) и т.п.          Развитие математической символики было тесно… …   Большая советская энциклопедия

  • РАССЛОЕНИЕ — (расслоённое пространство) одна из фундам. структур, изучаемых в топологии. В совр. физике, гл. обр. в теории элементарных частиц, концепция Р. и ассоциированных с ним матем. структур (связность и т. п.) является наиб. адекватным языком для… …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»