- Парадокс Алле
-
Парадокс Алле, также известный как Парадокс Аллэ — термин, относящийся к теории рисков в сфере экономики и теории принятия решений. Назван по имени лауреата Нобелевской премии французского экономиста Мориса Алле (фр. Maurice Félix Charles Allais) и основан на его исследованиях.
Термин появился после выхода в свет статьи «Рациональное поведение человека перед лицом риска. Критика постулатов и аксиом американской школы» [1].
Парадокс демонстрирует неприменимость теории максимизации ожидаемой полезности в реальных условиях риска и неопределённости. Автор корректно, с позиций математики, объясняет суть парадокса. Парадокс демонстрирует, что реальный агент, ведущий себя рационально, предпочитает не поведение получения максимальной ожидаемой полезности, а поведение достижения абсолютной надежности.
Содержание
Примеры парадокса
Эксперимент Алле
Сам Алле провёл психологический эксперимент, описанный ниже, и получил парадоксальные результаты.
Индивидам предлагают выбор по одному решению из двух пар рискованных решений.
В первом случае в ситуации A есть 100 % уверенность в получении выигрыша в 1 млн франков, а в ситуации B имеется 10 % вероятность выигрыша в 5 млн франков, 89 % — в 1 млн франков и 1 % — не выиграть ничего.
Во втором случае тем же индивидам предлагается сделать выбор между ситуацией C и D. В ситуации C имеется 10 % вероятности выигрыша в 5 млн франков и 90 % не выиграть ничего, а в ситуации D 11 % составляет вероятность выигрыша в 1 млн франков и 89 % — не выиграть ничего.
Алле установил, что значительное большинство индивидов в этих условиях предпочтет выбор ситуации A в первой паре и ситуации C во второй. Этот результат воспринимался как парадоксальный. В рамках существовавшей гипотезы индивид, отдавший предпочтение выбору А в первой паре, должен выбрать ситуацию Д во второй паре, а остановивший выбор на В должен во второй паре отдать предпочтение выбору С. Алле математически точно объяснил этот парадокс. Его основной вывод гласил, что рационально действующий агент предпочитает абсолютную надежность.
Два выбора
Парадокс можно сформулировать в виде выбора между двумя вариантами, в каждом из которых с некоторой вероятностью достаётся та или иная сумма денег:
Вариант A Вариант B 89 %: X
10 %: 1 миллион
1 %: 10 миллионов89 %: X
10 %: 2,5 миллион
1 %: ничего (0)Здесь X — неизвестная выбирающему сумма.
Какой выбор будет более разумным? Результат останется прежним, если «неизвестная сумма» X — это 100 миллионов? Если это «ничего»?
Математическое ожидание в первом варианте равно
, а во втором:
, поэтому математически второй вариант B выгоднее независимо от значения X. Но люди боятся нулевого исхода в варианте B и поэтому чаще выбирают A. Однако если
, то психологический барьер устраняется, и большинство уходит от варианта A.
Другие парадоксы в экономике
Ряду парадоксов в экономике посвящены также работы Р. Талера (англ. Richard Thaler).
См. также
- Теория перспектив
- Эффект привязки
- Нейроэкономика
- Психология денег
- Теория принятия решений
- Список экономических парадоксов
- Санкт-Петербургский парадокс
Библиография
- ↑ («Le Comportement de l’Homme Rationnel devant le Risque. Critique des Postulats et Axiomes de l’Ecole Americaine»), опубликованной в журнале «Эконометрика» в октябре 1953 г. Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école Américaine, Econometrica 21, 503—546
Внешние ссылки
Категории:- Теория принятия решений
- Психологические эксперименты
- Экономические парадоксы
- Поведенческая экономика
Wikimedia Foundation. 2010.