Многочлены Лагерра

Многочлены Лагерра

В математике, Многочлены Лагерра, названные в честь Эдмона Лагерра (1834—1886), являются каноническими решениями Уравнения Лагерра:


x\,y'' + (1 - x)\,y' + n\,y = 0\,

являющегося линейным дифференциальным уравнением второго порядка. Многочлены Лагерра также используются в квадратурной формуле Гаусса-Лагерра численного вычисления интегралов вида: \int_0^\infty f(x) dx.

Многочлены Лагерра, обычно обозначающиеся как L_0, L_1, \dots, являются последовательностью полиномов, которая может быть найдена по Формуле Родрига


L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}\left(e^{-x} x^n\right).

L_n(x)=\sum^{n}_{k=0} \frac{(-1)^k}{k!}{n\choose k}x^k.

Эти полиномы ортогональны друг другу со скалярным произведением:

\langle f,g \rangle = \int_0^\infty f(x) g(x) e^{-x}\,dx.

Последовательность полиномов Лагерра — это последовательность Шеффера.

Многочлены Лагерра применяются в квантовой механике, в радиальной части решения уравнения Шредингера для атома с одним электроном. Имеются и другие применения многочленов Лагерра.

Несколько первых многочленов

В следующей таблице приведены несколько первых многочленов Лагерра:

n L_n(x)\,
0 1\,
1 -x+1\,
2 {\scriptstyle\frac{1}{2}} (x^2-4x+2) \,
3 {\scriptstyle\frac{1}{6}} (-x^3+9x^2-18x+6) \,
4 {\scriptstyle\frac{1}{24}} (x^4-16x^3+72x^2-96x+24) \,
5 {\scriptstyle\frac{1}{120}} (-x^5+25x^4-200x^3+600x^2-600x+120) \,
6 {\scriptstyle\frac{1}{720}} (x^6-36x^5+450x^4-2400x^3+5400x^2-4320x+720) \,
Первые 6 многочленов Лягерра.

Рекуррентная формула

Полиномы Лагерра можно определить рекуррентной формулой:

L_{k + 1}(x) = \frac{1}{k + 1} \bigl[ (2k + 1 - x)L_k(x) - k L_{k - 1}(x)\bigr],  \forall~k \geqslant 1

предопределив первые два полинома как:

L_0(x) = 1\,
L_1(x) = 1 - x\,

Обобщённые полиномы Лагерра

Обобщённые полиномы Лагерра имеют вид:

~L_{n,l}=A_0+A_1r+...+A_{n-1-l}r^{n-l-1}

где:

Обобщённые полиномы Лагерра L_n^a(x) являются решениями уравнения:


x\,y'' + (a + 1 - x)\,y' + n\,y = 0\,

так что L_n(x) = L_n^0(x).




Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Многочлены Лагерра" в других словарях:

  • Многочлены Чебышёва — две последовательности многочленов Tn(x) и Un(x), названные в честь Пафнутия Львовича Чебышёва. Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в… …   Википедия

  • Лагерра полиномы — В математике, Многочлены Лагерра, названные в честь Эдмонда Лагерра (1834 1886), являются каноническими решениями Уравнения Лагерра: являющегося линейным дифференциальным уравнением второго порядка. Это уравнение имеет несингулярное решение… …   Википедия

  • ЛАГЕРРА ФУНКЦИИ — функции, являющиеся решениями уравнения где a, n произвольные параметры. Л. ф. могут быть выражены через вырожденную гипергеометрическую функцию или через Уиттекера функцию. В случае n=0, 1,2... решения уравнения (*) наз. Лагерра многочленами.… …   Математическая энциклопедия

  • ЛАГЕРРА МНОГОЧЛЕНЫ — многочлены Чебышева Лагерра, многочлены, ортогональные на интервале с весовой функцией где a> 1. Стандартизованные Л. м. определяются формулой представление с помощью гамма функции: В применениях наиболее важны формулы: Многочлен удовлетворяет …   Математическая энциклопедия

  • Многочлены Эрмита — Многочлены Эрмита  определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике. Эти многочлены названы в честь Шарля Эрмита. Содержание 1… …   Википедия

  • Лагерра многочлены — (по имени французского математика Э. Лагерра, Е. Laguerre; 1834 86)         специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2 ... Л. м. Ln(x) могут быть определены формулой:                  ;          в… …   Большая советская энциклопедия

  • ЛАГЕРРА УРАВНЕНИЕ — см. Лагерра многочлены …   Математическая энциклопедия

  • ОРТОГОНАЛЬНЫЕ МНОГОЧЛЕНЫ — система многочленов {Р n (х)}, удовлетворяющих условию ортогональности причем степень каждого многочлена Р n (х). равна его индексу п, а весовая функция (вес) на интервале ( а, b).или (в случае конечности a и b) на отрезке [a, b]. О. м. наз. о р… …   Математическая энциклопедия

  • КЛАССИЧЕСКИЕ ОРТОГОНАЛЬНЫЕ МНОГОЧЛЕНЫ — общее название Якоби многочленов, Эрмита многочленов, Лагерра многочленов и Чебышева многочленов. Эти системы ортогональных многочленов обладают общими свойствами: 1) Весовая функция j(х)на интервале ортогональности ( а, b )удовлетворяет… …   Математическая энциклопедия

  • Ортогональные многочлены —         специальные системы многочленов {рп (х)}; n = 0, 1, 2,..., ортогональных с весом ρ(х) на отрезке [а, b ] (см. Ортогональная система функций). Нормированная система О. м. обозначается через х) удовлетворяет дифференциальному уравнению… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»