Теорема Александрова

Теорема Александрова

Теорема Александрова — классическая теорема в теории функции вещественной переменной.

Произвольная выпуклая функция на f\colon\R^n\to\R дважды дифференцируема почти везде.


История

  • В случае n=1, теорема следует из того что монотонная функция дифференцируема почти везде.
  • Случай n=2, был доказан Буземаном (англ.) и Феллером.[1]
  • Общий случай был доказан Александровым.[2]

См. также

Литература

  1. H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Math. 66 (1935), 1—47.
  2. A. D. Alexandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 6 (1939), 3—35.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Теорема Александрова" в других словарях:

  • Теорема Александрова о выпуклых многогранниках — геометрическая теорема о единственности замкнутого выпуклого многогранника с заданными направлениями граней, доказанная А.Д. Александровым в 1937 году[1],[2],[3]. Обычно её формулируют так: Теорема Александрова о выпуклых многогранниках: Если… …   Википедия

  • Теорема Минковского о многогранниках — общее название двух теорем о существовании и единственности замкнутого выпуклого многогранника с заданными направлениями и площадями граней. Теорема единственности Минковского: Если между гранями двух замкнутых выпуклых многогранников установлено …   Википедия

  • Теорема Эйлера для многогранников —   теорема, устанавливающая связь между числом вершин, рёбер и граней для многогранников, топологически эквивалентных сфере. Содержание 1 Формулировка 2 История 3 См. также …   Википедия

  • Теорема Бликера — Из развёртки выпуклого многогранника с треугольными гранями всегда можно сложить невыпуклый многогранник с большим объёмом. Теорема доказана Дэвидом Бликером (англ. David Dudley Bleecker) в 1996 г. Ссылки «Увеличение объёма …   Википедия

  • Теорема Радемахера — Теорема Радемахера  классическая теорема в теории функции вещественной переменной. Липшицева функция, определённая на открытом множестве евклидова пространства, дифференцируема на нём почти всюду. Вариации и обобщения Теорема Александрова… …   Википедия

  • Теорема Коши о многогранниках — У этого термина существуют и другие значения, см. Теорема Коши. Теорема Коши о многогранниках: Два замкнутых выпуклых многогранника конгруэнтны, если между их гранями, рёбрами и вершинами имеется сохраняющее инцидентность взаимно однозначное… …   Википедия

  • Теорема Линделёфа о многограннике — У этого термина существуют и другие значения, см. Теорема Линделёфа. Теорема Линделёфа о многограннике наименьшей площади при заданном объёме  геометрическая теорема, впервые доказанная Лоренсом Линделёфом в 1869 году .[1]. Может быть… …   Википедия

  • ДЕСКРИПТИВНАЯ ТЕОРИЯ МНОЖЕСТВ — раздел теории множеств, изучающий внутреннее строение множеств в зависимости ют тех операций, при помощи к рых эти множества могут быть построены из множеств сравнительно простой природы (напр., замкнутых или открытых подмножеств данного… …   Математическая энциклопедия

  • КАНТОРОВО МНОГООБРАЗИЕ — га мерный бикомпакт X,dim X=n, в к ром любая перегородка В между непустыми множествами имеет размерность Эквивалентное определение: re мерное К. м. есть n мерный бикомпакт X, обладающий тем свойством, что при всяком представлении его в виде суммы …   Математическая энциклопедия

  • РАЗМЕРНОСТИ ТЕОРИЯ — часть топологии, в к рой для каждого компакта, а впоследствии и для более общих классов топологич. пространств тем или иным естественным образом определяется числовой топологич. инвариант размерность, совпадающий, если Xесть полиэдр (в частности …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»