- Задача Гурса
-
Зада́ча Гурса́ — это разновидность краевой задачи для гиперболических уравнений и систем 2-го порядка с двумя независимыми переменными по данным на двух выходящих из одной точки характеристических кривых.
Содержание
Историческая справка
Задача названа в честь математика Э. Гурса. В его широко известном «Курсе математического анализа» этой задаче посвящен отдельный параграф[1].
Постановка задачи
Пусть в области
задано гиперболическое уравнение
и краевое условие. Задача: найти регулярное в области
и непрерывное в замыкании
решение по краевому условию.
В «Математической Энциклопедии»[2] краевое условие формулируется следующим образом:
, где
и
— заданные непрерывно дифференцируемые функции.
В учебнике Тихонова, Самарского[3] оно формулируется немного по-другому:
, где
и
удовлетворяют условиям сопряжения и дифференцируемости.
В «Курсе» Гурса говорится о более общем случае.
Решение
Существование решения
Если функция
непрерывна для всех
и для любых
допускает производные
, которые по абсолютной величине меньше некоторого числа, то в области
существует единственное и устойчивое решение.
Метод Римана [* 1]
Рассматривается линейный случай. Исходное уравнение принимает вид
.
Вводится функция Римана
, которая однозначно определяется как решение уравнения
,
удовлетворяющее условиям на характеристиках
где
— произвольная точка.
Решение задачи Гурса в линейном случае в «Энциклопедии» дается при
Метод последовательных приближений [* 2]
Рассматривается два случая
Последовательно интегрируя исходное уравнение получаем аналитическую формулу
Из этой формулы следует существование и единственность решения данной задачи.
Исходное уравнение преобразуется к интегро-дифференциальному уравнению
Это уравнение решается методом последовательных приближений. Нулевое приближение
подставляется в интегро-дифференциальное уравнение. Результат принимается в качестве первого приближения, которое в свою очередь подставляется в интегро-дифференциальное уравнение и т. д. Таким образом получается бесконечная последовательность
. Далее доказывается сходимость данной последовательности и находится ее предел
. Этот предел и есть решение задачи.
Примечания
Источники
- ↑ Э. Гурса Курс математического анализа, том 3, часть 1. — Москва — Ленинград: Государственное Технико-Теоретическое Издательство, 1933.
- ↑ ГУРСА ЗАДАЧА
- ↑ Тихонов А. Н., Самарский А. А. Уравнения математической физики. — Москва: Главная редакция физико-математичекой литературы издательства «Наука», 1977.
Категории:- Дифференциальные уравнения в частных производных
- Математический анализ
Wikimedia Foundation. 2010.