- Порох
-
По́рох — многокомпонентная твёрдая взрывчатая смесь, способная к закономерному горению параллельными слоями без доступа кислорода извне с выделением большого количества тепловой энергии и газообразных продуктов, используемых для метания снарядов, движения ракет и в других целях[1]. Порох относят к классу метательных взрывчатых веществ.
Содержание
История
Первым представителем взрывчатых веществ был дымный порох — механическая смесь калиевой селитры, угля и серы, обычно в соотношении 15:3:2. Существует устойчивое мнение, что подобные составы появились ещё в древности и применялись главным образом в качестве зажигательных и разрушительных средств. Однако материальных или надёжных документальных подтверждений этого не найдено. В природе месторождения селитры встречаются редко, а калиевая селитра, необходимая для изготовления достаточно стабильных составов, не встречается вообще.
Существуют устойчивые многочисленные мнения, что порох был изобретён в Китае. К середине первого века нашей эры селитра была известна в Китае и есть убедительные доказательства использования селитры и серы в различных комбинациях в основном для приготовления лекарств[2]. Китайский алхимический текст, датированный 492 годом, описывает практический и надёжный способ отличить калийную селитру от других неорганических солей, служащий алхимикам для оценки и сравнения методов очистки — при сжигании селитры образуется фиолетовое пламя. Древние арабские и латинские способы очистки селитры опубликованы после 1 200 года[3]. Первое упоминание о напоминающей порох смеси появилось в Taishang Shengzu Danjing Mijue по Qing Xuzi (около 808 года) — описывается процесс смешивания шести частей серы, шести частей селитры на одну часть Aristolochia (травы, которая обеспечивала смесь углеродом)[4]. Первым описанием зажигательных свойств таких смесей является Zhenyuan miaodao yaolüe — даосский текст предварительно датируемый серединой IX-го века нашей эры[3]: «Некоторые нагревали вместе серу, реальгар и селитру с мёдом — в результате возникали дым и пламя, так что их руки и лица были сожжены, и даже весь дом, где они работали, сгорал»[5]. Китайское слово «порох» (от 火药/火药; пиньинь : Хо Яо / xuou yɑʊ /, что буквально означает «Огонь медицины»[6]) вошло в употребление через несколько веков после открытия смеси[7]. Таким образом, в IX-м веке даосские монахи и алхимики в поисках эликсира бессмертия по случайности наткнулись на порох[8][9]. Вскоре китайцы примененили порох для развития оружия: в последующие века они производили различные виды порохового оружия, включая огнеметы[10], ракеты, бомбы, примитивные гранаты и мины, прежде чем было изобретено огнестрельное оружие, использующее энергию пороха собственно для метания снарядов[11].
Уцзин цзунъяо (кит. трад. 武經總要, упр. 武经总要, пиньинь: wǔ jīng zǒng yào, буквально: «собрание наиболее важных военных методов») — китайский военный трактат, созданный в 1044 году при династии Северная Сун, составленый известными учёными Цзэн Гунлян, Дин Ду и Ян Вэйдэ труд является первым в мире манускриптом, в котором приведены рецепты пороха, даёт описание различных смесей, в состав которых включены продукты нефтехимии, а также чеснок и мёд[12]. Среди прочего упоминаются способы замедления горения пороха для создания фейерверков и ракет — если смесь не содержит достаточного для создания взрыва количества селитры (максимально количество селитры уменьшается на 50 %), то она просто горит[13]. Вместе с тем, Собрание наиболее важных военных методов написано чиновником во времена династии Сун и нет достаточных свидетельств того, что он имел непосредственное отношение к военным действиям. Также нет никаких упоминаний применения (использования) пороха в летописях, описывающих войны Китая против тангутов в XI-м веке. Впервые опыт применения «Огненного копья» упоминается при описании осады De’an в 1132 году[14].
На сегодняшний день принят основной научный консенсус о том, что порох был изобретён в Китае и затем распространился по Ближнему Востоку, а позже попал в Европу[15]. Возможно, это было сделано в IX веке, когда алхимики искали эликсир бессмертия. Его появление привело к изобретению фейерверков и ранних образцов огнестрельного оружия. Распространение пороха в Азии из Китая в значительной степени приписывается монголам. Гипотетически, порох попал в Европу через несколько веков[16]. Однако существуют споры, о том насколько китайский опыт применения пороха в боевых действиях повлиял на поздние достижения на Ближнем Востоке и в странах Европы[17][18].
Изготовление калиевой селитры требует разработанных технологических приёмов, которые появились лишь с развитием химии в XV—XVI веках и получением Глаубером азотной кислоты в 1625 году. Изготовление углеродных материалов с высокоразвитой удельной поверхностью типа древесных углей также требует развитой технологии, появившейся лишь с развитием металлургии железа. Наиболее вероятным является использование различных природных селитросодержащих смесей с органикой, обладающих свойствами, присущими пиротехническим составам. Одним из изобретателей пороха принято считать монаха Бертольда Шварца.
Метательное свойство дымного пороха было открыто значительно позже и послужило толчком к развитию огнестрельного оружия. В Европе (в том числе и на Руси) известен с середины XIV века; до середины XIX века оставался единственным взрывчатым веществом бризантного действия и до конца XIX века — метательным средством.
С изобретением нитроцеллюлозных порохов, а затем и индивидуальных мощных взрывчатых веществ, дымный порох в значительной мере утратил своё значение.
Впервые пироксилиновый порох был получен во Франции П. Вьелем в 1884, баллиститный порох — в Швеции Альфредом Нобелем в 1888, кордитный порох — в Великобритании в конце XIX века. Примерно в то же время (1887-91) в России Дмитрий Менделеев разработал пироколлодийный порох, а группа инженеров Охтинского порохового завода — пироксилиновый порох.
В 30-х годах XX века в СССР впервые были созданы заряды из баллиститного пороха для реактивных снарядов, успешно применявшихся войсками в период Великой Отечественной войны (реактивные системы залпового огня). Смесевые пороха для ракетных двигателей были разработаны в конце 1940-х годов.
Дальнейшее совершенствование порохов ведётся в направлении создания новых рецептур, порохов специального назначения и улучшения их основных характеристик.
Виды порохов
Различают два вида пороха: смесевые (в том числе дымный) и нитроцеллюлозные (бездымные). Пороха, применяемые в ракетных двигателях, называются твёрдыми ракетными топливами. Основу нитроцеллюлозных порохов составляют нитроцеллюлоза и пластификатор. Помимо основных компонентов эти пороха содержат различные добавки.
Порох является взрывчатым веществом метательного действия. При соответствующем условии инициирования пороха способны к детонации аналогично бризантным взрывчатым веществам, благодаря чему дымный порох долгое время применяли в качестве бризантного взрывчатого вещества. При длительном хранении больше установленного для данного пороха срока или при храненении в ненадлежащих условиях происходит химическое разложение компонентов пороха и изменение его эксплуатационных характеристик (режима горения, механических характеристик ракетных шашек и др.). Эксплуатация и даже хранение таких порохов крайне опасны и могут привести к взрыву.
Смесевые пороха
Дымный порох
Современные дымные пороха изготовляются в виде зёрен неправильной формы. Основой для получения пороха являются смеси серы, калийной селитры и угля. Во многих странах существуют свои пропорции смешения этих компонентов, однако они не сильно различаются, в России принят следующий состав: 75 % KNO3 (калиевая селитра) 15 % C (древесный уголь) и 10 % S (сера). Роль окислителя в них выполняет калийная селитра (нитрат калия), основного горючего — уголь. Сера является цементирующим веществом, понижающим гигроскопичность пороха и облегчающим его воспламенение. Эффективность горения дымного пороха во многом связана с тонкостью измельчения компонентов, полнотой смешения и формой зёрен в готовом виде.
Сорта дымных порохов (% состав KNO3, S, C.):
- шнуровой (для огнепроводных шнуров)(77 %, 12 %, 11 %);
- ружейный (для воспламенителей к зарядам из нитроцеллюлозных порохов и смесевых твёрдых топлив, а также для вышибных зарядов в зажигательных и осветительных снарядах);
- крупнозернистый (для воспламенителей);
- медленногорящий (для усилителей и замедлителей в трубках и взрывателях);
- минный (для взрывных работ) (75 %, 10 %, 15 %);
- охотничий (76 %, 9 %, 15 %);
- спортивный.
Дымный порох легко воспламеняется под действием пламени и искры (температура вспышки 300 °C), поэтому в обращении опасен. Хранится в герметической упаковке отдельно от других видов пороха. Гигроскопичен, при содержании влаги более 2 % плохо воспламеняется. Процесс производства дымных порохов предусматривает смешение тонкоизмельчённых компонентов и обработку полученной пороховой мякоти до получения зёрен заданных размеров. Коррозия стволов при использовании дымного пороха намного сильнее, чем от нитроцеллюлозных порохов, поскольку побочным продуктом сгорания является серная и сернистая кислоты. В настоящее время дымный порох используется в фейерверках. Примерно до конца XIX века применялся в огнестрельном оружии и взрывных боеприпасах.
Реакция горения:
Алюминиевый порох
Алюминиевый порох применяется в пиротехнике и состоит из смешанных в определенной пропорции сильно измельченных нитрата калия/натрия (окислитель), алюминиевой пудры (горючее) и серы. Этот порох отличается большей температурой, скоростью горения и большим выделение света. Применяется в разрывных элементах и флеш-составах (производящих вспышку). Пропорции (селитра:алюминий:сера):
- яркая вспышка — 57:28:15
- взрыв — 50:25:25.
Состав практически не отсыревает, не комкуется, но сильно мажется.
Нитроцеллюлозные пороха
Порох был первым известным «топливом» для огнестрельного оружия и ракет. В отличие от ранее использовавшегося чёрного (или дымного) пороха на основе угля, сегодня получили широкое распространение в основном порошки нитроцеллюлозы (нитроцеллюлозный порох), в отличие от ранее использовавшегося дымного пороха — так называемый бездымный. В настоящее время историческое название чёрного порошка — «порох» — используется для обозначения нитроцеллюлозы (как топлива). По составу и типу пластификатора (растворителя) нитроцеллюлозные пороха делятся на: пироксилиновые, баллиститные и кордитные. Они применяются для изготовления современных взрывчатых веществ, порохов, пиротехнических изделий и для подрыва (инициирования) других взрывчатых веществ, то есть в качестве детонаторов. Таким образом, в современных образцах вооружения в качестве топлива в основном используют бездымный порох (порошок нитроцеллюлозы, NC).
Пироксилиновые
Дополнительные сведения: ПироксилинВ состав пироксилиновых порохов обычно входит 91-96 % пироксилина, 1,2-5 % летучих веществ (спирт, эфир и вода), 1,0-1.5 % стабилизатора (дифениламин, централит) для увеличения стойкости при хранении, 2-6 % флегматизатора для замедления горения наружных слоев пороховых зёрен и 0,2-0,3 % графита в качестве добавок. Такие пороха изготовляются в виде пластинок, лент, колец, трубок и зёрен с одним или несколькими каналами; применяются в стрелковом оружии и в артиллерии. Основными недостатками пироксилиновых порохов являются: невысокая энергия газообразных продуктов сгорания (относительно, например, баллиститных порохов), технологическая сложность получения зарядов большого диаметра для ракетных двигателей. Основное время технологического цикла затрачивается на удаление из порохового полуфабриката летучих растворителей. В зависимости назначения помимо обычных пироксилиновых имеются специальные пороха: пламегасящие, малогигроскопичные, малоградиентные (с малой зависимостью скорости горения от температуры заряда); малоэрозионные (с пониженным разгарно-эрозионным воздействием на канал ствола); флегматизированные (с пониженной скоростью горения поверхностных слоев); пористые и другие. Процесс производства пироксилиновых порохов предусматривает растворение (пластификацию) пироксилина, прессование полученной пороховой массы и резку для придания пороховым элементам определённой формы и размеров, удаление растворителя и состоит из ряда последовательных операций.
Баллиститные
Дополнительные сведения: ДинитроцеллюлозаОснову баллиститных порохов составляют нитроцеллюлоза и неудаляемый пластификатор, поэтому их иногда называют двухосновными. В зависимости от применяемого пластификатора они называются нитроглицериновыми, дигликолевыми и так далее. Обычный состав баллиститных порохов: 40-60 % коллоксилина (нитроцеллюлоза с содержанием азота менее 12,2 %) и 30-55 % нитроглицерина (нитроглицериновые пороха) или диэтиленгликольдинитрата (дигликолевые пороха) либо их смеси. Кроме того, в состав этих порохов входят ароматические нитросоединения (например, динитротолуол) для регулирования температуры горения, стабилизаторы (дифениламин, централит), а также вазелиновое масло, камфора и другие добавки. Также в баллиститные пороха могут вводить мелкодисперсный металл (сплав алюминия с магнием) для повышения температуры и энергии продуктов сгорания, такие пороха называют металлизированными. Порох изготовляются в виде трубок, шашек, пластин, колец и лент. По применению баллиститные пороха делят на ракетные (для зарядов к ракетным двигателям и газогенераторам), артиллерийские (для метательных зарядов к артиллерийским орудиям) и миномётные (для метательных зарядов к миномётам). По сравнению с пироксилиновыми баллиститные пороха отличаются меньшей гигроскопичностью, большей быстротой изготовления, возможностью получения крупных зарядов (до 0,8 метра в диаметре), высокой механической прочностью и гибкостью за счёт использования пластификатора. Недостатком баллиститных порохов по сравнению с пироксилиновыми является большая опасность в производстве, обусловленная наличием в их составе мощного взрывчатого вещества — нитроглицерина, очень чувствительного к внешним воздействиям, а также невозможность получить заряды диаметром больше 0,8 м в отличие от смесевых порохов на основе синтетических полимеров. Технологический процесс производства баллиститных порохов предусматривает смешение компонентов в тёплой воде в целях их равномерного распределения, отжимку воды и многократное вальцевание на горячих вальцах. При этом удаляется вода и происходит пластификация нитрата целлюлозы, который приобретает вид роговидного полотна. Далее порох выпрессовывают через матрицы или прокатывают в тонкие листы и режут.
Кордитные
Дополнительные сведения: Пироксилин и НитроглицеринКордитные пороха содержат высокоазотный пироксилин, удаляемый (спирто-эфирная смесь, ацетон) и неудаляемый (нитроглицерин) пластификатор. Это приближает технологию производства данных порохов к производству пироксилиновых порохов.
Преимущество кордитов — большая мощность, однако они вызывают повышенный разгар стволов из-за более высокой температуры продуктов сгорания.
Твёрдое ракетное топливо
Смесевые пороха на основе синтетических полимеров (твёрдые ракетные топлива) содержат примерно 50-60 % окислителя, как правило перхлората аммония, 10-20 % пластифицированного полимерного связующего, 10-20 % мелкодисперсного порошка алюминия и различные добавки. Это направление пороходелания впервые появилось в Германии в 30-40е годы XX века, после окончания войны активной разработкой таких топлив занялись в США, а в начале 50х годов и в СССР. Главными преимуществами перед баллиститными порохами, привлёкшие к ним большое внимание явились: более высокая удельная тяга ракетных двигателей на таком топливе, возможность создавать заряды любой формы и размеров, высокие деформационные и механические свойства композиций, возможность регулировать скорость горения в широких пределах. Эти достоинства позволили создавать стратегические ракеты с дальностью действия более 10 000 км, на баллиститных порохах С. П. Королёву вместе с пороходелами удалось создать ракету с предельной дальностью действия 2 000 км. Но у смесевых твёрдых топлив есть значительные недостатки по сравнению с нитроцелюлозными порохами: очень высокая стоимость их изготовления, длительность цикла производства зарядов (до нескольких месяцев), сложность утилизации, выделение при горении перхлората аммония в атмосферу соляной кислоты.
Горение пороха и его регулирование
Горение параллельными слоями, не переходящее во взрыв, обусловливается передачей тепла от слоя к слою и достигается изготовлением достаточно монолитных пороховых элементов, лишённых трещин. Скорость горения порохов зависит от давления по степенному закону, увеличиваясь с ростом давления, поэтому не стоит ориентироваться на скорость сгорания пороха при атмосферном давлении, оценивая его характеристики. Регулирование скорости горения порохов очень сложная задача и решается использованием в составе порохов различных катализаторов горения. Горение параллельными слоями позволяет регулировать скорость газообразования. Газообразование пороха зависит от величины поверхности заряда и скорости его горения.
Величина поверхности пороховых элементов определяется их формой, геометрическими размерами и может в процессе горения увеличиваться или уменьшаться. Такое горение называется соответственно прогрессивным или дегрессивным. Для получения постоянной скорости газообразования или её изменения по определённому закону отдельные участки зарядов (например ракетных) покрывают слоем негорючих материалов (бронировкой). Скорость горения порохов зависит от их состава, начальной температуры и давления.
Характеристики пороха
Основными характеристиками пороха являются: теплота горения Q — количество тепла, выделяемое при полном сгорании 1 килограмма пороха; объём газообразных продуктов V выделяемых при сгорании 1 килограмма пороха (определяется после приведения газов к нормальным условиям); температура газов Т, определяемая при сгорании пороха в условиях постоянного объёма и отсутствия тепловых потерь; плотность пороха ρ; сила пороха f — работа, которую мог бы совершить 1 килограмм пороховых газов, расширяясь при нагревании на Т градусов при нормальном атмосферном давлении.
Характеристики основных типов порохов
Порох Q, ккал/кг V, дм³/кг T, K Пироксилиновый 700 900 ~2000 Баллиститные: 900 1000 1700-4000 ТРТ 1200 860 1500-3500 артиллерийский 880 750 ~2500 Кордитный 850 990 ~2000 Дымный 700 300 ~2200 См. также
Примечания
- ↑ Советская военная энциклопедия. — Т. 6. — С. 456.
- ↑ Buchanan. «Editor’s Introduction: Setting the Context», in Buchanan 2006.
- ↑ 1 2 Chase 2003:31–32
- ↑ Peter Allan Lorge (2008), «The Asian military revolution: from gunpowder to the bomb», Cambridge University Press, с. 32, ISBN 978-0-521-60954-8
- ↑ Kelly 2004:4
- ↑ «The Big Book of Trivia Fun», Kidsbooks, 2004
- ↑ Peter Allan Lorge (2008), «The Asian military revolution: from gunpowder to the bomb», Cambridge University Press, с. 18, ISBN 978-0-521-60954-8
- ↑ Needham 1986, p. 7 «Without doubt it was in the previous century, around +850, that the early alchemical experiments on the constituents of gunpowder, with its self-contained oxygen, reached their climax in the appearance of the mixture itself.»
- ↑ Buchanan 2006, p. 2 «With its ninth century AD origins in China, the knowledge of gunpowder emerged from the search by alchemists for the secrets of life, to filter through the channels of Middle Eastern culture, and take root in Europe with consequences that form the context of the studies in this volume.»
- ↑ Needham, Volume 5, Part 7, 83
- ↑ Chase 2003:1 «The earliest known formula for gunpowder can be found in a Chinese work dating probably from the 800s. The Chinese wasted little time in applying it to warfare, and they produced a variety of gunpowder weapons, including flamethrowers, rockets, bombs, and land mines, before inventing firearms.»
- ↑ Ebrey, 138.
- ↑ Chase 2003:31
- ↑ Peter Allan Lorge (2008), «The Asian military revolution: from gunpowder to the bomb», Cambridge University Press, сс. 33–34, ISBN 978-0-521-60954-8
- ↑ Buchanan (2006), p. 2
- ↑ Jack Kelly Gunpowder: Alchemy, Bombards, and Pyrotechnics: The History of the Explosive that Changed the World, Perseus Books Group: 2005. — pp. 2-5. ISBN :0465037224, 9780465037223
- ↑ Jack Kelly Gunpowder: Alchemy, Bombards, and Pyrotechnics: The History of the Explosive that Changed the World, Perseus Books Group: 2005, ISBN 0-465-03722-4, ISBN 978-0-465-03722-3: 272 pages
- ↑ St. C. Easton: «Roger Bacon and his Search for a Universal Science», Oxford (1962)
Литература
- Мао Цзо-бэнь Это изобретено в Китае / Перевод с китайского и примечания А. Клышко. — М.: Молодая гвардия, 1959. — С. 35-45. — 160 с. — 25 000 экз.
- Порох // Советская военная энциклопедия / под ред. Н. В. Огаркова. — М.: Воениздат, 1978. — Т. 6. — 678 с. — (в 8-ми т). — 105 000 экз.
Ссылки
Категории:- Пороходелие
- История технологий
- Составные части патрона
- Источники огня
Wikimedia Foundation. 2010.