Вейвлет

Вейвлет

Вейвле́ты (от англ. wavelet), всплески (гораздо реже[1] — вэйвле́ты) — это математические функции, позволяющие анализировать различные частотные компоненты данных. Однако это частное определение — в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб — время — уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием сигнала. Полученные вейвлет-спектрограммы принципиально отличаются от обычных спектров Фурье тем, что дают четкую привязку спектра различных особенностей сигналов ко времени.

Содержание

История

В начале развития области употреблялся термин «волночка» — калька с английского. Английское слово «wavelet» означает в переводе «маленькая волна», или «волны, идущие друг за другом». И тот и другой перевод подходит к определению вейвлетов. Вейвлеты — это семейство функций, которые локальны во времени и по частоте («маленькие»), и в которых все функции получаются из одной посредством её сдвигов и растяжений по оси времени (так что они «идут друг за другом»).

Разработка вейвлетов связана с несколькими отдельными нитями рассуждений, начавшимися с работ Хаара в начале двадцатого века. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие то, что сейчас известно как непрерывное вейвлет-преобразование (НВП) (1982), Жан Олаф-Стромберг с ранними работами по дискретным вейвлетам (1983), Добеши, разработавшая ортогональные вейвлеты с компактным носителем (1988), Малла, предложивший кратномасштабный метод (1989), Натали Делпрат, создавшая временно-частотную интерпретацию CWT (1991), Ньюланд, разработавший гармоническое вейвлет-преобразование и многие другие.

В конце 20-го века появляются инструментальные средства по вейвлетам в системах компьютерной математики Mathcad, MATLAB и Mathematica (см. их описание в книге Дьяконова В. П.). Вейвлеты стали широко применяться в технике обработки сигналов и изображений, в частности для компрессии их и очистки от шума. Были созданы интегральные микросхемы для вейвлет-обработки сигналов и изображений.

Определения, свойства, виды

Существует несколько подходов к определению вейвлета: через масштабный фильтр, масштабную функцию, вейвлет-функцию. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости.

Примеры вейвлетов

Вейвлет-преобразования

Сопоставление волна (wave) — вейвлет, ЛЧМ-сигнал (chirp) — чирплет

Вейвлет-анализ применяется для анализа нестационарных медицинских сигналов, в том числе в электрогастроэнтерографии.

Вейвлет-преобразования обычно делят на дискретное вейвлет-преобразование (ДВП) и непрерывное вейвлет-преобразование (НВП).

Дискретное

Вейвлеты, образующие ДВП, могут рассматриваться как разновидность фильтра конечного импульсного отклика.

Применение: обычно используется для кодирования сигналов (инженерное дело, компьютерные науки)

Непрерывное

Вейвлеты, образующие НВП, подчиняются принципу неопредёленности Гейзенберга и соответственно базис дискретного вейвлета также может рассматриваться в контексте других форм принципа неопределённости

Применение: для анализа сигналов (научные исследования)

Теория вейвлетов

Связана с несколькими другими методиками.

Все вейвлет-преобразования могут рассматриваться как разновидность временно-частотного представления и, следовательно относятся к предмету гармонического анализа.

Дискретное вейвлет-преобразование может рассматриваться как разновидность фильтра конечного импульсного отклика.

Примечания

См. также

Литература

  • Добеши И. Десять лекций по вейвлетам. — Ижевск: РХД, 2001. — 464 с.
  • Дьяконов В. П. Вейвлеты. От теории к практике. — М.: СОЛОН-Пресс, 2004. — 440 с.
  • Малла С. Вэйвлеты в обработке сигналов. — М.: Мир, 2005. — 672 с.
  • Смоленцев Н. К. Введение в теорию вейвлетов. — Ижевск: РХД, 2010. — 292 с.
  • Чуи К. Введение в вэйвлеты. — М.: Мир, 2001. — 412 с.

Ссылки


Wikimedia Foundation. 2010.

Нужна курсовая?
Синонимы:

Полезное


Смотреть что такое "Вейвлет" в других словарях:

  • вейвлет — сущ., кол во синонимов: 1 • волна (35) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • вейвлет — 3.28 вейвлет (wavelet): Временной сигнал на некоторой частоте, используемый для формирования сигнала возбуждения при испытаниях с воспроизведением заданного ударного спектра. Примечание Термин «вейвлет» в том смысле, как он применен в настоящем… …   Словарь-справочник терминов нормативно-технической документации

  • Вейвлет-преобразование — (англ. Wavelet transform)  интегральное преобразование, которое представляет собой свертку вейвлет функции с сигналом. Cпособ преобразования функции (или сигнала) в форму, которая или делает некоторые величины исходного сигнала более… …   Википедия

  • Вейвлет Койфлет — порядка 1 К вейвлет функциям с компактным носителем относятся вейвлеты Добеши, койфлеты и симмлеты. Метод построения вейвлет функций с компактным носителем принадлежит Ингр …   Википедия

  • Вейвлет Хаара — один из первых и наиболее простых вейвлетов. Он был предложен венгерским математиком Альфредом Хааром в 1909 году. Вейвлеты Хаара ортогональны, обладают компактным н …   Википедия

  • ВЕЙВЛЕТ-АНАЛИЗ — – Вейвлет преобразование переводит функцию одной переменной t в плоскость двух переменных t и a. При этом t характеризует положение центра вейвлета на оси времени, параметр a – временной масштаб осцилляций и в случае использования вейвлета Морле… …   Палеомагнитология, петромагнитология и геология. Словарь-справочник.

  • Вейвлет-разложение — В численном и функциональном анализе дискретные вейвлет преобразования (ДВП) относятся к вейвлет преобразованиям, в которых вейвлеты представлены дискретными сигналами (выборками). Первое ДВП было придумано венгерским математиком Альфредом Хааром …   Википедия

  • Дискретное вейвлет-преобразование — Пример 1 го уровня дискретного вейвлет преобразования изображения. Вверху оригинальное полноцветное изображение, в середине вейвлет преобразование, сделанное по горизонтали исходного изображения (только канал яркости), внизу вейвлет… …   Википедия

  • Дискретные вейвлет-преобразования — В численном и функциональном анализе дискретные вейвлет преобразования (ДВП) относятся к вейвлет преобразованиям, в которых вейвлеты представлены дискретными сигналами (выборками). Первое ДВП было придумано венгерским математиком Альфредом Хааром …   Википедия

  • Сжатие с использованием вейвлет — Вейвлетное сжатие  общее название класса методов кодирования изображений, использующих двумерное вейвлет разложение кодируемого изображения или его частей. Обычно подразумевается сжатие с потерей качества. Существенную роль в алгоритмах… …   Википедия

Книги

Другие книги по запросу «Вейвлет» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»