- Биметрические теории гравитации
-
Биметрические теория гравитации — альтернативные теории гравитации, в которых вместо одного метрического тензора используются два или более. Часто вторая метрика вводится только при высоких энергиях, в предположении, что скорость света может иметь зависимость от энергии. Наиболее известными примерами биметрических теорий являются теория Розена и релятивистская теория гравитации (последняя — в канонической трактовке).
Биметрическая теория Розена
В общей теории относительности предполагается, что расстояние между двумя точками в пространстве-времени определяется метрическим тензором. Уравнения Эйнштейна используются затем для расчета формы метрики на основании распределения энергии.
Натан Розен (1940) предложил в каждой точке пространства-времени ввести в дополнение к риманову метрическому тензору
евклидов метрический тензор
. Таким образом, в каждой точке пространства-времени мы получаем две метрики:
Первый метрический тензор
описывает геометрию пространства-времени и, таким образом, гравитационное поле. Второй метрический тензор
относится к плоскому пространству-времени и описывает инерционные силы. Символы Кристоффеля, сформированные из
и
, обозначим
и
соответственно.
определим таким образом, чтобы
Теперь возникают два вида ковариантного дифференцирования:
-дифференцирование, основанное на
— обозначается точкой с запятой (;), и 3-дифференцирование на основе
— обозначается символом / (обычные частные производные обозначаются запятой (,)).
и
будут тензорами кривизны, рассчитываемыми из
и
соответственно. На основе вышеизложенного подхода, в том случае, когда
описывает плоскую пространственно-временную метрику, тензор кривизны
равен нулю.
Из (1) следует, что хотя
и
не являются тензорами, но
— тензор, имеющий такую же форму, как
, за исключением того, что обычная частная производная заменяется 3-ковариантной производной. Простой расчет приводит к
Каждый член в правой стороне этого соотношения является тензором. Видно, что от общей теории относительности, можно перейти к новой теории, заменив
на
, обычное дифференцирование на 3-ковариантное дифференцирование,
на
, элемент интегрирования
на
, где
,
и
. Необходимо отметить, что, как только мы ввели
в теорию, то в нашем распоряжении оказывается большое число новых тензоров и скаляров. Таким образом, можно получить уравнения поля, отличающиеся от уравнений поля Эйнштейна.
Уравнение для геодезической в биметрической теории относительности (БТО) принимает форму
Из уравнений (1) и (2) видно, что можно считать, что
описывает инерциальное поле, поскольку
исчезает при помощи подходящего преобразования координат. Свойство же
быть тензором не зависит от каких-либо систем координат, и, следовательно, можно полагать, что
описывает постоянное гравитационное поле.
Розеном (1973) были найдены биметрические теории, удовлетворяющие принципу эквивалентности. В 1966 г. Розен показал, что введение плоской пространственной метрики в рамках общей теории относительности не только позволяет получить плотность энергии-импульса тензора гравитационного поля, но также позволяет получить этот тензор из вариационного принципа. Уравнение поля в БТО, полученное из вариационного принципа
где
или
и
- тензор энергии-импульса. Вариационный принцип приводит также к связи
Поэтому из (3)
что подразумевает, что пробная частица в гравитационном поле движется по геодезической по отношению к
. Физические следствия такой теории, впрочем, не отличаются от общей теории относительности.
При ином выборе исходных уравнений биметрические теории и ОТО различаются в следующих случаях:
- Распространение электромагнитных волн
- Внешнее поле звезд высокой плотности
- Распространение интенсивных гравитационных волн через сильное статическое гравитационное поле
Ссылки
- N. Rosen (1940). «General Relativity and Flat Space. I». Phys. Rev. 57 (2): 147-150. DOI:10.1103/PhysRev.57.147.
- N. Rosen (1940). «General Relativity and Flat Space. II». Phys. Rev. 57 (2): 150-153. DOI:10.1103/PhysRev.57.150.
- N. Rosen (1973). «A bi-metric theory of gravitation». General Relativity and Gravitation 4 (6): 435-447. DOI:10.1007/BF01215403.
- N. Rosen (1975). «A bi-metric theory of gravitation. II». General Relativity and Gravitation 6 (3): 259-268. DOI:10.1007/BF00751570.
Категория:- Теории гравитации
Wikimedia Foundation. 2010.