Формула Гаусса-Остроградского
- Формула Гаусса-Остроградского
-
Теорема Остроградского — Гаусса — утверждение интегрального исчисления функций многих переменных, устанавливающее связь между n-кратным интегралом по области и (n − 1)-кратным интегралом по её границе. Пусть V = (v1,v2,...,vn) есть векторное поле на
, такое что функции vi вместе со своими частными производными
интегрируемы по Лебегу в ограниченной области Ω, граница
которой является объединением конечного множества кусочно гладких (n − 1)-мерных гиперповерхностей, ориентированных с помощью внешней единичной нормали ν.
Тогда формула Остроградского имеет вид

где

есть дивергенция поля V.
Формула Остроградского — Гаусса в векторной форме имеет вид
,
то есть интеграл от дивергенции векторного поля
, распространённый по некоторому объёму T, равен потоку вектора через поверхность S, ограничивающую данный объём.
Формула применяется для преобразования объёмного интеграла в интеграл по поверхности, ограничивающей данный объём, то есть замкнутых, таких как поверхность воздушного шарика, и не применима к поверхностям, таким как воздушный шар с подогревом.
В работе Остроградского формула записана в следующем виде,
,
где ω и s дифференциалы объёма и поверхности. В современной записи ω = dΩ — элемент объема, s = dS — элемент поверхности.
— функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью.
История
Для гладких функций эта формула была впервые получена в трёхмерном случае Остроградским в 1828 (опубликована в 1831). На n-мерный случай была обобщена им же в 1834 (опубликовано в 1838). С помощью этой формулы Остроградский нашёл выражение производной по параметру от n-кратного интеграла с переменными пределами и получил формулу для вариации n-кратного интеграла. При n = 3 для одного частного случая формула Остроградского была получена Гауссом в 1813, поэтому иногда она называется также формулой Остроградского — Гаусса. Что интересно, в западной литературе порядок фамилий изменён — она именуется как «теорема Гаусса — Остроградского». Обобщением формулы Остроградского является формула Стокса для многообразий с краем.
Литература
- Остроградский М. В., Note sur les integrales definies. Mem. 1’Acad. (VI), 1, стр. 117—122, 29/Х 1828 (1831).
- Остроградский М. В., Memoire sur le calcul des variations des integrales multiples. Mem. 1’Acad., 1, стр. 35—58, 24/1 1834 (1838)
Wikimedia Foundation.
2010.
Полезное
Смотреть что такое "Формула Гаусса-Остроградского" в других словарях:
Формула Гаусса—Остроградского — Формула Остроградского математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного… … Википедия
ГАУССА-ОСТРОГРАДСКОГО ФОРМУЛА — одна из основных интегральных теорем векторного анализа, связывающая объемный интеграл с поверхностным: Здесь замкнутая поверхность, ограничивающая 3 мерную область V, а п проекция вектора на внеш. нормаль к поверхности. Получена Дж. Грином (G.… … Физическая энциклопедия
Остроградского формула — Теорема Остроградского Гаусса утверждение интегрального исчисления функций многих переменных, устанавливающее связь между n кратным интегралом по области и (n − 1) кратным интегралом по её границе. Пусть V = (v1,v2,...,vn) есть векторное поле… … Википедия
Формула Остроградского — Формула Остроградского формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного поля ,… … Википедия
ОСТРОГРАДСКОГО ФОРМУЛА — формула интегрального исчисления функций многих переменных, устанавливающая связь между n кратным интегралом по области и ( п 1) кратным интегралом но ее границе. Пусть функции Xi=Xi(x1,x2,..., х п).вместе со своими частными производными , i=1, 2 … Математическая энциклопедия
Теорема Гаусса — Классическая электродинамика … Википедия
Теорема Гаусса (значения) — Существует несколько утверждений, называемых теоремой Гаусса: Теорема Гаусса (закон Гаусса) в электростатике и электродинамике и общая формулировка ее формальной части Теорема Гаусса Остроградского в векторном анализе. Теорема Гаусса Ванцеля о… … Википедия
Магнитный закон Гаусса — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона … Википедия
Остроградский, Михаил Васильевич — профессор математики, ординарный академик Императорской Академии Наук. М. В. Остроградский родился 12 сентября 1801 года в принадлежавшей его отцу деревне Пашенной, Кобелякского уезда, Полтавской губернии, где и провел свои детские годы.… … Большая биографическая энциклопедия
СТОКСА ТЕОРЕМА — обобщение Стокса формулы, утверждениео равенстве интеграла от внеш. дифференциала dw дифференциальной формы поориентированному компактному многообразию М интегралу от самой формыпо ориентированному (согласованно с ориентацией многообразия М )краю … Физическая энциклопедия