Управляемая термоядерная реакция

Управляемая термоядерная реакция
Солнце — природный термоядерный реактор

Управляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерном оружии), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (²H) и тритий (³H), а в более отдалённой перспективе гелий-3 (³He) и бор-11 (11B)

Содержание

Типы реакций

Реакция синтеза заключается в следующем: берутся два или больше атомных ядра и с применением некоторой силы сближаются настолько, что силы, действующие на таких расстояниях, преобладают над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. Оно будет иметь несколько меньшую массу, чем сумма масс исходных ядер, а разница становится энергией которая и выделяется в процессе реакции. Количество выделяемой энергии описывает известная формула E=mc². Более легкие атомные ядра проще свести на нужное расстояние, поэтому водород - самый распространенный элемент во Вселенной - является наилучшим горючим для реакции синтеза.

Установлено, что смесь двух изотопов водорода, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, продуцировать меньше нейтронов. Особенную заинтересованность вызывают, так называемые «Безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на его декомиссию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом.

Схема реакции дейтерий-тритий

Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.

Реакция дейтерий + тритий (Топливо D-T)

Самая легко осуществимая реакция — дейтерий + тритий:

2H + 3H = 4He + n при энергетическом выходе 17,6 МэВ (мегаэлектронвольт)

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток её- выход нежелательной нейтронной радиации.

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.
{}^{2}_{1}\mbox{H} + {}^{3}_{1}\mbox{H}  \rightarrow {}^{4}_{2}\mbox{He} + {}^{1}_{0}\mbox{n} + 17,6 \mbox{ MeV}
Токамак (ТОроидальная КАмера с МАгнитными Катушками) — тороидальная установка для магнитного удержания плазмы. Плазма удерживается не стенками камеры, которые не способны выдержать её температуру, а специально создаваемым магнитным полем. Особенностью токамака является использование электрического тока, протекающего через плазму для создания полоидального поля, необходимого для равновесия плазмы.

Реакция дейтерий + гелий-3

Существенно сложнее, на пределе возможного, осуществить реакцию дейтерий + гелий-3

²H + ³He = 4He + p. при энергетическом выходе 18,4 МэВ

Условия её достижения значительно сложнее. Гелий-3,кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах на настоящее время не производится. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях.

Сложность проведения термоядерной реакции можно характеризовать тройным произведением nTt (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T.

 \mathrm{D} + \! ^3\mathrm{He} \ \rightarrow \ \mathrm{p} + {}^4\!\,\mathrm{He} + 18{,}353 \; \mathrm{MeV}

Реакция между ядрами дейтерия (D-D, монотопливо)

Так же возможны реакции между ядрами дейтерия, они идут немного труднее реакции с участием гелия-3:

 \mathrm{D} + \mathrm{D} \ \rightarrow \ \mathrm{p} + \mathrm{T} + 4{,}032 \; \mathrm{MeV}
 \mathrm{D} + \mathrm{D} \ \rightarrow \ \mathrm{n} + {}^3\!\,\mathrm{He} + 3{,}268 \; \mathrm{MeV}

В результате в дополнение к основной реакции в ДД-плазмы так же происходят :

 \mathrm{p} + \mathrm{D} \ \rightarrow \ {}^3\!\,\mathrm{He} + \gamma + 5{,}4 \; \mathrm{MeV}
 \mathrm{p} + \mathrm{T} \ \rightarrow \ {}^4\!\,\mathrm{He} + \gamma + 19{,}814 \; \mathrm{MeV}
 \mathrm{D} + \mathrm{T} \ \rightarrow \ \mathrm{n} + {}^4\!\,\mathrm{He} + 17{,}589 \; \mathrm{MeV}
 \mathrm{D} + \! ^3\mathrm{He} \ \rightarrow \ \mathrm{p} + {}^4\!\,\mathrm{He} + 18{,}353 \; \mathrm{MeV}
 {}^3\!\,\mathrm{He} + \! ^3\mathrm{He} \ \rightarrow \ 2 \,\mathrm{p} + \, {}^4\!\,\mathrm{He} + 12{,}86 \; \mathrm{MeV}
 \mathrm{T} + \mathrm{T} \ \rightarrow \ 2 \,\mathrm{n} + {}^4\!\,\mathrm{He} + 11{,}332 \; \mathrm{MeV}

Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3, а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием.

Другие типы реакций

Возможны и некоторые другие типы реакций. Выбор топлива зависит от многих факторов — его доступность и дешевизна, энергетический выход, лёгкость достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и проч.

«Безнейтронные» реакции

Наиболее перспективны т. н. «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и порождает наведенную радиоактивность в конструкции реактора. Реакция дейтерий- гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.

 \mathrm{D} + \! ^3\mathrm{He} \ \rightarrow \ \mathrm{p} + {}^4\!\,\mathrm{He} + 18{,}353 \; \mathrm{MeV}
 \mathrm{D} + \! ^6\mathrm{Li} \ \rightarrow \ 2 \, {}^4\!\,\mathrm{He} + 22{,}4 \; \mathrm{MeV}
 \mathrm{p} + \! ^6\mathrm{Li} \ \rightarrow {}^4\!\,\mathrm{He} + {}^3\!\,\mathrm{He} + 4{,}0 \; \mathrm{MeV}
 {}^3\!\,\mathrm{He} + \! ^6\mathrm{Li} \ \rightarrow \ \mathrm{p} + 2 \, {}^4\!\,\mathrm{He} + 16{,}9 \; \mathrm{MeV}
 {}^3\!\,\mathrm{He} + \! ^3\mathrm{He} \ \rightarrow \ 2 \,\mathrm{p} + \, {}^4\!\,\mathrm{He} + 12{,}86 \; \mathrm{MeV}
 \mathrm{p} + \! ^7\mathrm{Li} \ \rightarrow \ 2 \, {}^4\!\,\mathrm{He} + 17{,}2 \; \mathrm{MeV}
 \mathrm{p} +  \! ^1\! ^1\mathrm{B} \ \rightarrow \ 3 \, {}^4\!\,\mathrm{He} + 8{,}7 \; \mathrm{MeV}

Условия

Ядерная реакция лития-6 с дейтерием 6Li(d,α)α

УТС возможен при одновременном выполнении двух критериев:

  • Температура плазмы:
T > 10^8 K \,\!
n\tau > 5*10^{19} cm^{-3} \cdot c \,\! (для реакции D-T)

где n \,\! — плотность высокотемпературной плазмы, \tau \,\! — время удержания плазмы в системе.

Именно от значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного исследовательского реактора ITER находится в начальной стадии.

Термоядерная энергетика и гелий-3

Запасы гелия-3 на Земле составляют от 500 кг до 1 тонны, однако на Луне он находится в значительном количестве: до 10 млн тонн (по минимальным оценкам — 500 тысяч тонн). В настоящее время контролируемая термоядерная реакция осуществляется путем синтеза дейтерия ²H и трития ³H с выделением гелия-4 4He и «быстрого» нейтрона n:

{}^{2}\textrm{H} + {}^{3}\textrm{H} \rightarrow {}^{4}\textrm{He} (3,5 MeV) + n (14,1 MeV)

Однако при этом большая часть (более 80%) выделяемой кинетической энергии приходится именно на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую. Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов. В отличие от этого синтез дейтерия и гелия-3 ³He не производит (почти) радиоактивных продуктов:

{}^{2}\textrm{H} + {}^{3}\textrm{He} \rightarrow {}^{4}\textrm{He} (3,7 MeV) + p (14,7 MeV), где p — протон

Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие, как магнитогидродинамический генератор.

Конструкции реакторов

Рассматриваются две принципиальные схемы осуществления управляемого термоядерного синтеза.

  1. Квазистационарные системы (\tau \ge 1 c, n \ge 10^{14} cm^{-3} \,\!). Нагрев и удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре. Для этого применяются реакторы в виде токамаков, стеллараторов (торсатронов) и зеркальных ловушек, которые отличаются конфигурацией магнитого поля. Реактор ITER имеет конфигурацию токамака.
  2. Импульсные системы (\tau \sim 10^{-8} c, n \ge 10^{22} cm^{-3} \,\!). В таких системах УТС осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными лазерными или ионными импульсами. Такое облучение вызывает последовательность термоядерных микровзрывов.

Исследования первого вида термоядерных реакторов существенно более развиты, чем второго. В ядерной физике, при исследованиях термоядерного синтеза, для удержания плазмы в некотором объёме используется магнитная ловушка . Магнитная ловушка призвана удерживать плазму от контакта с элементами термоядерного реактора, т.е. используется в первую очередь как теплоизолятор. Принцип удержания основан на взаимодействии заряженных частиц с магнитным полем, а именно на вращении заряженных частиц вокруг силовых линий магнитного поля. К сожалению, замагниченная плазма очень не стабильна и стремится покинуть магнитное поле. Поэтому для создания эффективной магнитной ловушки используются самые сверхмощныме электромагниты, потребляющее огромное количество энергии.

Можно уменьшить размер термоядерного реактора, если в нем использовать одновременно три способа создания термоядерной реакции.

A. Инерционный синтез. Облучать крошечные капсулы дейтериево-тритиевого топлива лазером мощностью 500 триллионов ватт:5. 10^14 Вт. Этот гигантский, очень кратковременный лазерный импульс 10^-8 c приводит к взрыву топливных капсул, в результате чего на доли секунды рождается мини-звезда. Но термоядерной реакции на нем не достигнуть.

B. Одновременно использовать Z-machine с Токамаком.

Z-Машина действует иначе чем лазер. Она пропускает через паутину тончайших проводов, окружающих топливную капсулу, заряд мощностью в полтриллиона ватт 5. 10^11 Вт.

Далее происходит примерно то же самое, что и с лазером: в результате Z-удара получается звезда. В ходе испытаний на Z-Машине уже удалось запустить реакцию синтеза. <ref>http://www.sandia.gov/media/z290.htm</ref>Капсулы покрыть серебром и соединить нитью из серебра или графита. Процесс поджига выглядит так: Выстрелить нитью (прикрепленных к группе шариков из серебра, внутри которых смесь дейтериия и трития) в вакуумную камеру. Образовать при пробое (разряде) канал молнии по ним, подавать ток по плазме. Одновременно облучить капсулы и плазму лазерным излучением. И одновременно или раньше включить Токамак. использовать три процесса нагрева плазмы одновременно. То есть поместить Z-машину и лазерный нагрев вместе внутри Токамака. Может быть можно создать и колебательный контур из катушек Токамака и организовать резонанс. Тогда он работал бы в экономном колебательном режиме.

Цикл топлива

Реакторы первого поколения будут, вероятнее всего, работать на смеси дейтерия и трития. Нейтроны, которые появляются в процессе реакции, поглотятся защитой реактора, а выделяющееся тепло будет использоваться для нагревания теплоносителяя в теплообменнике, и эта энергия, в свою очередь, будет использоваться для вращения генератора.

 {}^6_3\mathrm{Li} \ + \ ^1_0\mathrm{n} \ \rightarrow \ ^3_1\mathrm{T} \ + \ ^4_2\mathrm{He}.
 {}^7_3\mathrm{Li} \ + \ ^1_0\mathrm{n} \ \rightarrow \ ^3_1\mathrm{T} \ + \ ^4_2\mathrm{He} + \ ^1_0\mathrm{n}.

Реакция с Li6 является экзотермической, обеспечивая получение небольшой энергии для реактора. Реакция с Li7 является эндотермической- но не потребляет нейтронов. По крайней мере некоторые реакции Li7 необходимы для замены нейтронов потерянных в реакции с другими элементами. Большинство конструкций реактора используют естественные смеси изотопов лития.

Это горючее имеет ряд недостатков:

Реакция продуцирует значительное количество нейтронов, которые активируют (радиоактивно заражают) реактор и теплообменник. Также требуются мероприятия для защиты от возможного истока радиоактивного трития.

Только около 20 % энергии синтеза есть в форме заряженных частиц (остальные нейтроны), что ограничивает возможность прямого превращения энергии синтеза в электроэнергию. Использование D-T реакции зависит от имеющихся запасов лития, которые значительно меньше чем запасы дейтерия. Нейтронное облучение во время D-T реакции настолько значительное, что после первой серии тестов на JET, наибольшем реакторе на сегодняшний день что использует это топливо, реактор стал настолько радиоактивным, что для завершения годового цикла тестов пришлось прибавить роботизованую систему дистанционного обслуживания.

Существуют, в теории, альтернативные виды горючего, которые лишены указанных недостатков. Но их использованию препятствует фундаментальное физическое ограничение. Чтобы получить достаточное количество энергии из реакции синтеза, необходимо удерживать достаточно плотную плазму при температуре синтеза (108 K) на протяжении определенного времени. Этот фундаментальный аспект синтеза описывается произведением густоты плазмы, n, на время содержания нагретой плазмы τ, что требуется для достижения точки равновесия. Произведение, nτ, зависит от типа горючего и является функцией температуры плазмы. Из всех видов горючего дейтерий-тритиевая смесь требует самого низкого значения nτ по меньшей мере на порядок, и самую низкую температуру реакции, по меньшей мере в 5 раз. Таким образом, D-T реакция является необходимым первым шагом, однако использование других видов горючего остается важной целью исследований.

Реакция синтеза в качестве промышленного источника электроэнергии

Энергия синтеза рассматривается многими исследователями в качестве «естественного» источника энергии в долгосрочной перспективе. Сторонники коммерческого использования термоядерных реакторов для производства электроэнергии приводят следующие аргументы в их пользу:

  • Практически неисчерпаемые запасы топлива (водород)
  • Топливо можно добывать из морской воды на любом побережье мира, что делает невозможным монополизацию горючего одной или группой стран
  • Невозможность неуправляемой реакции синтеза
  • Отсутствие продуктов сгорания
  • Нет необходимости использовать материалы которые могут быть использованы для производства ядерного оружия, таким образом исключается случаи саботажа и терроризма
  • По сравнению с ядерными реакторами, вырабатывается незначительное количество радиоактивных отходов с коротким периодом полураспада.
  • Оценивают, что наперсток, наполненный дейтерием, производит энергию, эквивалентную 20 тоннам угля. Озеро среднего размера в состоянии обеспечить любую страну энергией на сотни лет. Однако следует заметить, что существующие исследовательские реакторы спроектированы для достижения прямой дейтериево-тритиевой (DT) реакции, цикл топлива которой требует использования лития для производства трития, тогда как заявления о неисчерпаемости энергии касаются использования дейтериево-дейтериевой (DD) реакции во втором поколении реакторов.
  • Так же, как и реакция деления, реакция синтеза не производит атмосферных выбросов углекислоты, что является главным вкладом в глобальное потепление. Это является значительным преимуществом, поскольку использование горючих ископаемых для производства электроэнергии имеет своим следствием то, что, например в США производится 29 кг CO2 (один из основных газов, которые могут считаться причиной глобального потепления) на жителя США в день.

Стоимость электроэнергии в сравнении с традиционными источниками

Критики указывают, что вопрос о экономической целесообразности использования ядерного синтеза для производства электроэнергии остается открытым. В том же исследовании [1] по заказу Офиса в Справах Науки и Техники Британского Парламента указывается, что себестоимость производства электроэнергии с использованием термоядерного реактора будет, вероятно, в верхней части спектра стоимости традиционных источников энергии. Много будет зависеть от будущей технологии, структуры и регулирования рынка. Стоимость электроэнергии напрямую зависит от эффективности использования, продолжительности эксплуатирования и стоимости декомиссии реактора. Критики коммерческого использования энергии ядерного синтеза отрицают, что углеводородное топливо в значительной мере субсидируется правительством, как прямо так и косвенно, например использованием вооруженных сил для обеспечения их бесперебойного снабжения, война в Ираке часто приводится как неоднозначный пример такого способа субсидирования. Учет таких косвенных субсидий является очень сложным, и делает точное сравнение себестоимости практически невозможным.

Отдельно стоит вопрос стоимости исследований. Страны Европейского Сообщества тратят около 200 млн ежегодно на исследования, и прогнозируется, что нужно еще несколько десятилетий пока промышленное использование ядерного синтеза станет возможным. Сторонники альтернативных источников электроэнергии считают, что было бы целесообразнее направить эти средства на внедрение возобновляемых источников электроэнергии.

Доступность коммерческой энергии ядерного синтеза

К сожалению, невзирая на распространенный оптимизм (распространенный начиная с 1950-х годов, когда первые исследования начались), существенные препятствия между сегодняшним пониманием процессов ядерного синтеза, технологическими возможностями и практическим использованием ядерного синтеза до сих пор не преодолены, неясным является даже насколько может быть экономически выгодно производство электроэнергии с использованием термоядерного синтеза. Хотя прогресс в исследованиях является постоянным, исследователи то и дело сталкиваются с новыми проблемами. Например, проблемой является разработка материала, способного выдержать нейтронную бомбардировку, что, как оценивается, должно быть в 100 раз интенсивнее чем в традиционных ядерных реакторах.

Различают следующие этапы в исследованиях:

1.Равновесие или режим «перевала» (Break-even): когда общая энергия что выделяется в процессе синтеза равняется общей энергии тратящей на запуск и поддержку реакции. Это соотношение помечают символом Q. Равновесие реакции было продемонстрировано на JET (Joint European Torus) в Великобритании в 1997 году. (Затратив на его разогрев 52 МВт электроэнергии, на выходе ученые получили мощность на 0,2 МВт выше затраченной.)

2.Пылающая плазма (Burning Plasma): промежуточный этап, на котором реакция будет поддерживаться главным образом альфа-частицами, что продуцируются в процессе реакции, а не внешним подогревом. Q ≈ 5. До сих пор не достигнутый.

3. Воспламенение (Ignition): стабильная реакция что поддерживает саму себя. Должна достигаться при больших значениях Q. До сих пор не достигнуто.

Следующим шагом в исследованиях должен стать ITER (International Thermonuclear Experimental Reactor), Международный Термоядерный Экспериментальный Реактор. На этом реакторе планируется провести исследование поведения высокотемпературной плазмы (пылающая плазма с Q ~ 30) и конструктивных материалов для промышленного реактора. Окончательной фазой исследований станет DEMO: прототип промышленного реактора, на котором будет достигнуто воспламенение, и продемонстрирована практическая пригодность новых материалов. Самые оптимистичные прогнозы завершения фазы DEMO: 30 лет. Учитывая ориентировочное время на построение и введение в эксплуатацию промышленного реактора, нас отделяет ~40 лет от промышленного использования термоядерной энергии.

Существующие токамаки

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

  • СССР и Россия
    • Т-3 — первый функциональный аппарат.
    • Т-4 — увеличенный вариант Т-3
    • Т-7 — уникальная установка, в которой впервые в мире реализована относительно крупная магнитная система со сверхпроводящим соленоидом на базе ниобата олова, охлаждаемого жидким гелием. Главная задача Т-7 была выполнена: подготовлена перспектива для следующего поколения сверхпроводящих соленоидов термоядерной энергетики.
    • Т-10 и PLT — следующий шаг в мировых термоядерных исследованиях, они почти одинакового размера, равной мощности, с одинаковым фактором удержания. И полученные результаты идентичны: на обоих реакторах достигнута заветная температура термоядерного синтеза, а отставание по критерию Лоусона — всего в двести раз.
    • Т-15 — реактор сегодняшнего дня со сверхпроводящим соленоидом, дающим поле напряжённостью 3,6 Тл.
  • Ливия
    • ТМ-4А
  • Европа и Великобритания
    • JET(англ.) (Joint Europeus Tor) — самый крупный в мире токамак, созданный организацией Евратом в Великобритании. В нём использован комбинированный нагрев: 20 МВт — нейтральная инжекция, 32 МВт — ионно-циклотронный резонанс. В итоге критерий Лоусона лишь в 4—5 раз ниже уровня зажигания.
    • Tore Supra(фр.) [1](англ.) — токамак со сверхпроводящими катушками, один из крупнейших в мире. Находится в исследовательском центре Кадараш (Франция).
  • США
    • TFTR(англ.) (Test Fusion Tokamak Reactor) — крупнейший токамак США (в Принстонском университете) с дополнительным нагревом быстрыми нейтральными частицами. Достигнут высокий результат: критерий Лоусона при истинно термоядерной температуре всего в 5,5 раза ниже порога зажигания. Закрыт в 1997 г.
    • NSTX (англ.) (National Spherical Torus Experiment) — сферический токамак (сферомак) работающий в настоящее время в Принстонском университете. Первая плазма в реакторе получена в 1999 году, через два года после закрытия TFTR.
    • Alcator C-Mod(англ.) — один из трех крупнейших токамаков в США (два других — NSTX и DIII-D), Alcator C-Mod характеризуется самым высоким магнитным полем и давлением плазмы в мире. Работает с 1993 г.
    • DIII-D (англ.) — токамак США, созданный и работающий в компании General Atomic в San Diego.
  • Япония
    • JT-60 (англ.) — крупнейший Японский токамак работающий в Японском Институте Ядерных Исследований (japan Atomic Energy Research Institute) с 1985 г.
  • Китай
    • EAST (англ.) - Экспериментальный усовершенствованный сверхпроводимый токамак (Experimental Advanced Superconducting Tokamak, EAST). Является глубокой модернизацией Российского токамака HT-7. Работает в рамках международного проекта ITER. Первые успешные испытания были проведены летом 2006 года. Принадлежит "Институту физики плазмы Китайской академии наук ( Institute of Plasma Physics under the Chinese Academy of Sciences (CAS))". Расположен в городе Хэфэй, провинции Аньхуй. На этом реакторе в 2007 году был проведён первый в мире "безубыточный" термоядерный синтез, с точки зрения соотношения затраченной/полученной энергии. На данный момент это соотношение состовляет 1:1,25. В ближайшем будущем планируется довести это соотношение до 1:50.

Ссылки

См. также

Примечания


Wikimedia Foundation. 2010.

Нужен реферат?

Полезное


Смотреть что такое "Управляемая термоядерная реакция" в других словарях:

  • управляемая термоядерная реакция — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN controlled thermonuclear reactionCTR …   Справочник технического переводчика

  • Термоядерный ракетный двигатель — варианты конструкции ТЯРД Термоядерный ракетный двигатель (ТЯРД)  перспективный ракетный двигатель для космических полётов, в котором для создания тяги предполагаетс …   Википедия

  • Капица, Пётр Леонидович — В Википедии есть статьи о других людях с такой фамилией, см. Капица. Пётр Леонидович Капица …   Википедия

  • Лазерное излучение — (действие на вещество)         Высокая мощность Л. и. в сочетании с высокой направленностью позволяет получать с помощью фокусировки световые потоки огромной интенсивности. Наибольшие мощности излучения получены с помощью твердотельных Лазеров на …   Большая советская энциклопедия

  • Сибирцев, Иван Иванович — В Википедии есть статьи о других людях с такой фамилией, см. Сибирцев. Иван Иванович Сибирцев Имя при рождении: Иван Иванович Худоногов Дата рождения: 1924 год(1924) Место рождения: Красноярск Дат …   Википедия

  • Ядерные процессы — Ядерная физика Атомное ядро · Радиоактивный распад · Ядерная реакция Основные термины Атомное ядро · Изотопы · Изобары · Период полураспада · Ма …   Википедия

  • Ядерные реакции — Ядерная физика Атомное ядро · Радиоактивный распад · Ядерная реакция Основные термины Атомное ядро · Изотопы · Изобары · Период полураспада · Ма …   Википедия

  • Деление ядра —     Ядерная физика …   Википедия

  • Реактор — Виды реакторов: Биореактор прибор, осуществляющий перемешивание культуральной среды в процессе микробиологического синтеза. Дугогасящий реактор электрический аппарат с изменяемой индуктивностью, служащий для уменьшения токов однофазных замыканий… …   Википедия

  • Ядерный реактор — CROCUS Ядерный реактор  это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»