- СДНФ
-
СДНФ (Совершенная Дизъюнктивная Нормальная Форма) — это такая ДНФ, которая удовлетворяет трём условиям:
- в ней нет одинаковых элементарных конъюнкций
- в каждой конъюнкции нет одинаковых пропозициональных букв
- каждая элементарная конъюнкция содержит каждую пропозициональную букву из входящих в данную ДНФ пропозициональных букв, причем в одинаковом порядке.
Для любой функции алгебры логики существует своя СДНФ, причем единственная.
Содержание
Пример нахождения СДНФ
Для того, чтобы получить СДНФ функции, требуется составить её таблицу истинности. К примеру, возьмём одну из таблиц истинности статьи Минимизация логических функций методом Квайна, в которой нахождение СДНФ встречается несколько раз:
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 В ячейках результата
отмечаются лишь те комбинации, которые приводят логическое выражение в состояние единицы.
Далее рассматриваются значения переменных при которых функция равна 1. Если значение переменной равно 0, то она записывается с инверсией. Если значение переменной равно 1, то без инверсии.Первая строка содержит 1 в указанном поле. Отмечаются значения всех четырёх переменных, это:
= 0
= 0
= 0
= 0
Нулевые значения — тут все переменные представлены нулями — записываются в конечном выражении инверсией этой переменной. Первый член СДНФ рассматриваемой функции выглядит так:
Переменные второго члена:= 0
= 0
= 0
= 1
в этом случае будет представлен без инверсии:
Таким образом анализируются все ячейки
. Совершенная ДНФ этой функции будет дизъюнкцией всех полученных членов (элементарных конъюнкций).
Совершенная ДНФ этой функции:
См. также
Ссылки
Примечания
Категория:- Булева алгебра
Wikimedia Foundation. 2010.