- СКНФ
-
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.СКНФ (Совершенная Конъюнктивная Нормальная Форма) — это такая КНФ, которая удовлетворяет трём условиям:
- в ней нет одинаковых элементарных дизъюнкций
- в каждой дизъюнкции нет одинаковых пропозициональных переменных
- каждая элементарная дизъюнкция содержит каждую пропозициональную букву из входящих в данную КНФ пропозициональных букв.
Пример нахождения СКНФ
Для того, чтобы получить СКНФ функции, требуется составить её таблицу истинности. К примеру, возьмём одну из таблиц истинности статьи Минимизация логических функций методом Квайна:
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 В ячейках строки́
отмечаются лишь те комбинации, которые приводят логическое выражение в состояние нуля.
Четвертый столбец содержит 0 в указанном поле. Отмечаются значения всех четырёх переменных, это:
= 0
= 0
= 1
= 1
В дизъюнкцию записывается переменная без инверсии если она в наборе равна 0 и с инверсией если она равна 1. Первый член СКНФ рассматриваемой функции выглядит так:
Остальные члены СКНФ составляются по аналогии.
См. также
Категория:- Булева алгебра
Wikimedia Foundation. 2010.