Множитель Лагранжа

Множитель Лагранжа

Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где x\in\R^n, относительно m ограничений \varphi_i(x)=0, i меняется от единицы до m.

Содержание

Описание метода

  • Составим функцию Лагранжа в виде линейной комбинации функции f и функций \varphi_i, взятыми с коэффициентами, называемыми множителями Лагранжа — λi:
L(x,\;\lambda)=f(x)+\sum_{i=1}^m\lambda_i\varphi_i(x),
где \lambda=(\lambda_1,\;\ldots,\;\lambda_m).
  • Составим систему из n + m уравнений, приравняв к нулю частные производные функции Лагранжа L(x,\;\lambda) по xj и λi.
  • Если полученная система имеет решение относительно параметров x'j и λ'i, тогда точка x' может быть условным экстремумом, то есть решением исходной задачи. Заметим, что это условие носит необходимый, но не достаточный характер.

Обоснование

Нижеприведенное обоснование метода множителей Лагранжа не является его строгим доказательством. Оно содержит эвристические рассуждения, помогающие понять геометрический смысл метода.

Двумерный случай

Линии уровня \scriptstyle{f(x,\;y)} и кривая \scriptstyle{S}.

Пусть требуется найти экстремум некоторой функции двух переменных f(x,\;y) при условии, задаваемом уравнением \psi(x,\;y)=0. Мы будем считать, что все функции непрерывно дифференцируемы, и данное уравнение задает гладкую кривую S на плоскости (x,\;y). Тогда задача сводится к нахождению экстремума функции f на кривой S. Будем также считать, что S не проходит через точки, в которых градиент f обращается в 0.

Нарисуем на плоскости (x,\;y) линии уровня функции f (то есть кривые f(x,\;y)=\mathrm{const}). Из геометрических соображений видно, что экстремумом функции f на кривой S могут быть только точки, в которых касательные к S и соответствующей линии уровня совпадают. Действительно, если кривая S пересекает линию уровня f в точке (x_0,\;y_0) трансверсально (то есть под некоторым ненулевым углом), то двигаясь по кривой S из точки (x_0,\;y_0) мы можем попасть как на линии уровня, соответствующие большему значению f, так и меньшему. Следовательно, такая точка не может быть точкой экстремума.

Тем самым, необходимым условием экстремума в нашем случае будет совпадение касательных. Чтобы записать его в аналитической форме, заметим, что оно эквивалентно параллельности градиентов функций f и ψ в данной точке, поскольку вектор градиента перпендикулярен касательной к линии уровня. Это условие выражается в следующей форме:

\nabla f\Big|_{(x_0,\;y_0)}=\lambda\nabla\psi\Big|_{(x_0,\;y_0)},\qquad\qquad(1)

где λ — некоторое число, отличное от нуля, и являющееся множителем Лагранжа.

Рассмотрим теперь функцию Лагранжа , зависящую от x,\;y и λ:

L(x,\;y,\;\lambda)=f(x,\;y)-\lambda\psi(x,\;y).

Необходимым условием ее экстремума является равенство нулю градиента \nabla L(x_0,\;y_0,\;\lambda_0)=0. В соответствии с правилами дифференцирования, оно записывается в виде

\left\{\begin{matrix}
\dfrac{\partial f(x_0,\;y_0)}{\partial x}-\lambda\dfrac{\partial\psi(x_0,\;y_0)}{\partial x} & = & 0,\\
\dfrac{\partial f(x_0,\;y_0)}{\partial y}-\lambda\dfrac{\partial\psi(x_0,\;y_0)}{\partial y} & = & 0,\\
-\psi(x_0,\;y_0) & = & 0.
\end{matrix}\right.

Мы получили систему, первые два уравнения которой эквивалентны необходимому условию локального экстремума (1), а третье — уравнению \psi(x,\;y)=0. Из нее можно найти (x_0,\;y_0,\;\lambda_0). При этом \lambda_0\ne 0, поскольку в противном случае градиент функции f обращается в нуль в точке (x_0,\;y_0)\in S, что противоречит нашим предположениям. Следует заметить, что найденные таким образом точки (x_0,\;y_0) могут и не являться искомыми точками условного экстремума — рассмотренное условие носит необходимый, но не достаточный характер. Нахождение условного экстремума с помощью вспомогательной функции L и составляет основу метода множителей Лагранжа, примененного здесь для простейшего случая двух переменных. Оказывается, вышеприведенные рассуждения обобщаются на случай произвольного числа переменных и уравнений, задающих условия.

На основе метода множителей Лагранжа можно доказать и некоторые достаточные условия для условного экстремума, требующие анализа вторых производных функции Лагранжа.

Применение

  • Метод множителей Лагранжа применяется при решении задач нелинейного программирования, возникающих во многих областях (например, в экономике).
  • Основной метод решения задачи об оптимизации качества кодирования аудио и видео данных при заданном среднем битрейте (оптимизация искажений — англ. Rate-Distortion optimization).

См. также

Ссылки

  • Зорич В. А. Математический анализ. Часть 1. — изд. 2-е, испр. и доп. — М.: ФАЗИС, 1997.



Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Множитель Лагранжа" в других словарях:

  • множитель Лагранжа — Lagranžo daugiklis statusas T sritis fizika atitikmenys: angl. Lagrangian multiplier vok. Lagrange Faktor, m rus. множитель Лагранжа, m pranc. multiplicateur de Lagrange, m …   Fizikos terminų žodynas

  • Дифференциальные уравнения Лагранжа и Клеро — Дифференциальным уравнением называется соотношение, связывающее переменную величину , искомую функцию и её производные, то есть соотношение вида: Дифференциальные уравнения находят широчайшее применение в различных областях науки и техники. Они… …   Википедия

  • Вариационное исчисление —         математическая дисциплина, посвященная отысканию экстремальных (наибольших и наименьших) значений функционалов переменных величин, зависящих от выбора одной или нескольких функций. В. и. является естественным развитием той главы… …   Большая советская энциклопедия

  • КАЛИБРОВОЧНЫЕ ПОЛЯ — (компенсирующие поля), векторные поля, обеспечивающие инвариантность ур ний движения относительно калибровочных преобразований (см. КАЛИБРОВОЧНАЯ СИММЕТРИЯ). Примеры таких полей эл. магн. поле в электродинамике, а также глюонные поля в квантовой… …   Физическая энциклопедия

  • СВЕРХТЕКУЧАЯ МОДЕЛЬ ЯДРА — обобщение одночастичной оболоченной модели ядра, учитывающее парные корреляции нуклонов вблизи поверхности Ферми в средних и тяжёлых ядрах. С. м. я. опирается на понятие остаточного взаимодействия нуклонов. Согласно модели оболочек, значит. часть …   Физическая энциклопедия

  • УСТОЙЧИВОСТЬ СОЛИТОНОВ — раздел теории устойчивости движения, изучающий эволюцию солитонов, подверженных нек рому возмущению в нач. момент времени. В зависимости от тииа возмущения и способа его описания различают неск. видов У. с. На практике обычно ограничиваются… …   Физическая энциклопедия

  • УСТОЙЧИВОСТЬ УПРУГИХ СИСТЕМ — свойство упругих систем возвращаться к состоянию равновесия после малых отклонений их из этого состояния. Понятие У. у. с. тесно связано с общими понятиями устойчивости движения и равновесия. Устойчивость является необходимым условием для любой… …   Физическая энциклопедия

  • Lagrange-Faktor — Lagranžo daugiklis statusas T sritis fizika atitikmenys: angl. Lagrangian multiplier vok. Lagrange Faktor, m rus. множитель Лагранжа, m pranc. multiplicateur de Lagrange, m …   Fizikos terminų žodynas

  • Lagrangian multiplier — Lagranžo daugiklis statusas T sritis fizika atitikmenys: angl. Lagrangian multiplier vok. Lagrange Faktor, m rus. множитель Лагранжа, m pranc. multiplicateur de Lagrange, m …   Fizikos terminų žodynas

  • Lagranžo daugiklis — statusas T sritis fizika atitikmenys: angl. Lagrangian multiplier vok. Lagrange Faktor, m rus. множитель Лагранжа, m pranc. multiplicateur de Lagrange, m …   Fizikos terminų žodynas


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»