бирациональный

бирациональный
adj. birational

Русско-английский словарь математических терминов. — Американское математическое общество. . 1990.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "бирациональный" в других словарях:

  • бирациональный — бирациональный …   Орфографический словарь-справочник

  • БИРАЦИОНАЛЬНЫЙ МОРФИЗМ — морфизм схем, являющийся бирациональным отображением. К наиболее важным примерам Б. м. относятся: нормализация, раздутие, моноидальное преобразование. Любой собственный Б. м. регулярных двумерных схем разлагается в композицию моноидалъных… …   Математическая энциклопедия

  • БИРАЦИОНАЛЬНОЕ ОТОБРАЖЕНИЕ — бирациональный изоморфизм, рациональное отображение алгебраич. многообразий, индуцирующее изоморфизм их полей рациональных функций. В более общем смысле, рациональное отображение схем наз. бирациональным отображение м, если оно удовлетворяет… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКАЯ ПОВЕРХНОСТЬ — двумерное алгебраическое многообразие. Вместе с алгебраическими кривыми А. п. представляют собой наиболее изученный класс алгебраич. многообразий. Богатство задач и идей, применяемых для их решения, делает теорию А. п. одним из самых интересных… …   Математическая энциклопедия

  • ЗАРИСКОГО ТЕОРЕМА — о связности: пусть f: собственный сюръективный морфизм неприводимых многообразий и пусть поле рациональных функций k(Y)сепарабельно алгебраически замкнуто в k(Х), а нормальная точка, тогда f 1(y)связно (и более того, геометрически связно) (см.… …   Математическая энциклопедия

  • МИНИМАЛЬНАЯ МОДЕЛЬ — алгебраическое многообразие с условием минимальности относительно существования бирациональных морфизмов на неособые многообразия. Точнее, пусть В класс всех бирацио нально эквивалентных неособых проективных многообразий над алгебраически… …   Математическая энциклопедия

  • АРИФМЕТИЧЕСКИЙ РОД — численный инвариант алгебраических многообразий. Для произвольного проективного алгебраич. многообразия X(над полем k), все неприводимые компоненты к рого имеют размерность пи к рое определяется однородным идеалом I в кольце , арифметический род… …   Математическая энциклопедия

  • КВАДРИКА — 1) К. поверхность 2 го порядка. В трехмерном пространстве (проективном, аффинном или евклидовом) К. есть множество точек, однородные координаты х 0, х 1, х 2, х 3 к рых (относительно проективной, аффинной или декартовой системы координат)… …   Математическая энциклопедия

  • ЛЮРОТА ПРОБЛЕМА — проблема характеризации подполей поля рациональных функций. В 1876 Ж. Люрот [1] (см. также [2]) доказал, что всякое подполе поля рациональных функций от одной переменной k(x), содержащее поле kи отличное от k, изоморфно полю k(x).(теорема Л ю р о …   Математическая энциклопедия

  • МОНОИДАЛЬНОЕ ПРЕОБРАЗОВАНИЕ — раздутие, s процесс, специального вида бирациональный морфизм алгебраич. многообразий или биме роморфный морфизм аналитич. ространств. Пусть, напр., X алгебраич. многообразие (или произвольная схема), а замкнутое подмногообразие, задаваемое… …   Математическая энциклопедия

  • ОСОБАЯ ТОЧКА — 1) О. т. аналитической функции f(z) препятствие для аналитического продолжения элемента функции f(z) комплексного переменного zвдоль какого либо пути на плоскости этого переменного. Пусть аналитическая функция f(z) определена некоторым… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»