КЭРТИС

КЭРТИС
КЭРТИС (Curtiss) Глен Хаммонд (1878-1930), пионер воздухоплавания в США. Как и БРАТЬЯ РАЙТ, он начинал с конструирования велосипедов. Но в 1908 г. он совершил первый в США полет на расстояние свыше 1 км. Во время Первой мировой войны (1914-18) Кэртис строил самолеты, его «Дженни» (JN-4) была широко известна как учебная машина. Компании, созданные Кэртисом и братьями Райт, слились и дали начало корпорации «Кэртис-Райт».

Научно-технический энциклопедический словарь.

Игры ⚽ Поможем написать реферат

Смотреть что такое "КЭРТИС" в других словарях:

  • Кэрнс (город) — Город Кэрнс Cairns Страна АвстралияАвстралия …   Википедия

  • АССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — кольца и алгебры с ассоциативным умножением, т. е. множества с двумя бинарными операциями сложением + и умножением Х, являющиеся абелевой группой по сложению и полугруппой по умножению, причем умножение дистрибутивно (слева и справа) относительно …   Математическая энциклопедия

  • ВЕДДЕРБЕРНА - МАЛЬЦЕВА ТЕОРЕМА — пусть А конечномерная ассоциативная алгебра над полем Fс радикалом N и пусть факторалгебра A/N сепарабельная алгебра (для алгебр над полем характеристики 0 это всегда выполнено); тогда алгебра Аразлагается (как линейное пространство) в прямую… …   Математическая энциклопедия

  • ГРУППОВАЯ АЛГЕБРА — группы G над полем K ассоциативная алгебра над полем К, элементами к рой являются всевозможные формальные конечные суммы вида а операции определяются формулами: (в правой части второй формулы сумма также конечна). Эта алгебра обозначается… …   Математическая энциклопедия

  • ИМПРИМИТИВНАЯ ГРУППА — группа Gвзаимно однозначных отображений на себя ( подстановок )нек рого множества S, для к рой существует разбиение множества Sв объединение непересекающихся подмножеств S1, . . ., Sm, обладающее следующими свойствами: число элементов хотя бы в… …   Математическая энциклопедия

  • КАРТАНА МАТРИЦА — 1) К …   Математическая энциклопедия

  • КВАЗИФРОБЕНИУСОВО КОЛЬЦО — QF к ольцо, артиново кольцо (слева и справа), удовлетворяющее аннуляторным условиям: для каждого левого (правого) идеала L(Н)(см. Аннулятор). Артиново слева кольцо, удовлетворяющее лишь одному из аннуляторных условий, может не быть К. к. Интерес… …   Математическая энциклопедия

  • КОНЕЧНАЯ ГРУППА — группа с конечным числом элементов. Это число наз. порядком группы. Исторически К. г. послужили исходным материалом для формирования многих понятий абстрактной теории групп. Обычно говорят, что целью теории К. г. является описание, с точностью до …   Математическая энциклопедия

  • КОНЕЧНОЙ ГРУППЫ ПРЕДСТАВЛЕНИЕ — гомоморфизм конечной группы Gв группу обратимых линейных операторов в векторном пространстве над полем К. Теория К …   Математическая энциклопедия

  • МОНОМИАЛЬНОЕ ПРЕДСТАВЛЕНИЕ — конечной группы G такое представление группы Gв конечномерном векторном пространстве V, что в нек ром базисе этого пространства матрица оператора для любого элемента имеет точно один ненулевой элемент в каждой строке и в каждом, столбце. Иногда М …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»