- дифференцируемое семейство
- мат. differentiable family
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
ДИФФЕРЕНЦИРУЕМОЕ МНОГООБРАЗИЕ — локально евклидово пространство, наделенное дифференциальной структурой. Пусть X хаусдорфово топологич. пространство. Если для каждой точки хО X найдется ее окрестность U, гомеоморфная открытому множеству пространства Rn, то Xназ. локально… … Математическая энциклопедия
МНОГООБРАЗИЕ — множество, точки к рого задаются набором чисел (координат), причём при переходе от точки к точке координаты меняются непрерывно. Локально, т. е. в нек рой окрестности каждой точки, M. устроено так же, как евклидово пространство . (элементы к рого … Физическая энциклопедия
ЛИНЕЙНОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В БАНАХОВОМ ПРОСТРАНСТВЕ — уравнение вида где A0(t), A1(t).при каждом t линейные операторы в банаховом пространстве Е, g(t) заданная, a u(t) искомая функции со значениями в Е;производная ипонимается как предел по норме Еразностного отношения. 1. Линейное дифференциальное… … Математическая энциклопедия
ОСОБЕННОСТИ ДИФФЕРЕНЦИРУЕМЫХ ОТОБРАЖЕНИЙ — раздел математич. анализа и дифференциальной геометрии, в к ром изучаются свойства отображений, сохраняющихся при заменах координат в образе и прообразе отображения (или при заменах, сохраняющих нек рые дополнительные структуры); предлагается… … Математическая энциклопедия
КОГОМОЛОГИИ — термин, употребляемый по отношению к функторам гомологической природы, которые, в отличие от гомологии, как правило, контравариантно зависят от объектов основной категории, на которой они определены. В отличие от гомологии, связывающие… … Математическая энциклопедия
ПОЛУГРУППА НЕЛИНЕЙНЫХ ОПЕРАТОРОВ — однопараметрическое семейство операторов S(t),0 t< , определенных и действующих в замкнутом подмножестве Сбанахова пространства X, обладающее свойствами: 1) S(t+t)x= S(t)(S(t)x).при х С, t,t>0; 2) S(Q)x=x для любого х С; 3) при каждом х… … Математическая энциклопедия
ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ ТЕОРИЯ — раздел дифференциальной геометрии, основанный на теории представления групп. Применение метода внешних дифференциальных форм позволяет ввести дифференциальные критерии Г. о. т., превращающие ее в эффективный аппарат дифференцпально геометрич.… … Математическая энциклопедия
ИНДЕКСА ФОРМУЛЫ — соотношения между аналитич. и топологич. инвариантами операторов нек рого класса. Именно, И. ф. устанавливают связь между аналитич. индексом линейного оператора (L0, L1 топологич. векторные пространства), определяемым формулой и измеряющим таким… … Математическая энциклопедия
ЛИНЕЙНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАТОР — в узком смысле оператор, действующий на функции, заданные на открытом множестве и принимающий значения в поле или по формуле где функции со значениями в том же поле, наз. коэффициентами А. Если коэффициенты принимают значения во множестве матриц… … Математическая энциклопедия
ОСОБАЯ ТОЧКА — 1) О. т. аналитической функции f(z) препятствие для аналитического продолжения элемента функции f(z) комплексного переменного zвдоль какого либо пути на плоскости этого переменного. Пусть аналитическая функция f(z) определена некоторым… … Математическая энциклопедия
ПОЛИЭДР — объединение локально конечного семейства выпуклых многогранников в нек ром Rn. Под выпуклым многогранником понимается пересечение конечного числа замкнутых полупространств в случае, если это пересечение ограничено. Локальная конечность семейства… … Математическая энциклопедия