Интеграл Виноградова — кратный интеграл вида где являющийся средним значением степени 2k модуля тригонометрической суммы. Теорема Виноградова о величине этого интеграла теорема о среднем лежит в основе оценок сумм Вейля. Литература Виноградова инте … Википедия
Интеграл (значения) — Интеграл (см. также Первообразная, Численное интегрирование, Интегрирование по частям) математический оператор: Определённый интеграл Неопределённый интеграл различные определения интегралов: Интеграл расширение понятия суммы Интеграл Ито… … Википедия
Интеграл Курцвейля — Интеграл Курцвейля Хенстока обобщение интеграла Римана, позволяет полностью решить задачу о восстановлении дифференцируемой функции по её производной. Ни интеграл Римана (в том числе и несобственный), ни интеграл Лебега не дают… … Википедия
ИНТЕГРАЛ — одно из центральных понятий математич. анализа и всей математики, возникновение к рого связано с двумя задачами: о восстановлении функции по ее производной (напр., с задачей об отыскании закона движения материальной точки вдоль прямой по… … Математическая энциклопедия
Интеграл Курцвейля-Хенстока — В математике, Интеграл Курцвейля Хенстока является обобщением интеграла Римана, позволяющим полностью решить задачу о восстановлении дифференцируемой функции по её производной. Ни интеграл Римана (в том числе и несобственный), ни интеграл Лебега… … Википедия
ВИНОГРАДОВА МЕТОД — новый метод оценок три гонометрич. сумм (см. Тригонометрических сумм метод). В. м. позволяет получить очень точные оценки для широкого класса тригонометрич. сумм, в к рых переменная суммирования пробегает значения последовательных целых чисел,… … Математическая энциклопедия
ДАНЖУА ИНТЕГРАЛ — 1) Данжуа узкий (специальный) интеграл обобщение понятия интеграла Лебега. Функция f(x). наз. интегрируемой в смысле узкого (специального, D*) интеграла Данжуа на [ а, b], если существует такая непрерывная функция F(x)на [ а, b], что F… … Математическая энциклопедия
ЛЕБЕГА ИНТЕГРАЛ — одно из наиболее важных обобщений понятия интеграла. Пусть пространство с неотрицательной полной счетноаддитивной мерой причем Простой ф у. н к ц и е й наз. измеримая функция принимающая не более счетного множества значений: Простая функция gназ … Математическая энциклопедия
ЛЕБЕГА - СТИЛТЬЕСА ИНТЕГРАЛ — обобщение Лебега интеграла. Для неотрицательной меры m название интеграл Лебега Стилтьеса употребляется в том случае, когда и m, не есть мера Лебега; тогда интеграл определяется так же, как интеграл Лебега в общем случае. Если мера m… … Математическая энциклопедия
БОКСА ИНТЕГРАЛ — одно из обобщений интеграла Лебега, предложенных А. Данжуа (A. Denjoy, 1919), подробно изученное Т. Дж. Боксом (Т. J. Boks, 1921). Действительная функция f(x).на отрезке [ а, Ь]периодически (с периодом b a) продолжается на всю прямую. Для… … Математическая энциклопедия