Теорема Больцано — Вейерштрасса — Теорема Больцано Вейерштрасса, или лемма Больцано Вейерштрасса о предельной точке предложение анализа, одна из формулировок которого гласит: из всякой ограниченной последовательности точек пространства можно выделить сходящуюся… … Википедия
Эллиптические функции Вейерштрасса — Эллиптические функции Вейерштрасса одни из самых простых эллиптических функций. Этот класс функций (зависящих от эллиптической кривой) назван в честь Карла Вейерштрасса. Также их называют функциями Вейерштрасса, и используют для их… … Википедия
Теорема Вейерштрасса о функции на компакте — Теорема Вейерштрасса в математическом анализе и общей топологии гласит, что функция, непрерывная на компакте, ограничена на нём и достигает своей верхней и нижней грани. Содержание 1 Формулировка 2 Доказательство … Википедия
Теорема Вейерштрасса о функции, непрерывной на компакте — Теорема Вейерштрасса в математическом анализе и общей топологии гласит, что функция, непрерывная на компактe, ограничена на нём и достигает своей верхней и нижней грани. Содержание 1 Формулировка 2 Доказательство для R 3 Замечания … Википедия
Существенно особая точка — Изолированная особая точка функции , голоморфной в некоторой проколотой окрестности этой точки, называется существенно особой, если предел не существует. Содержание 1 … Википедия
Существенно особая точка — аналитической функции, точка z0 комплексной плоскости, в которой не существует ни конечного, ни бесконечного предела при z → z0 для функции, однозначной и аналитической в некоторой окрестности этой точки (см. Аналитические функции).… … Большая советская энциклопедия
Теорема Вейерштрасса об ограниченной возрастающей последовательности — утверждает, что любая ограниченная возрастающая последовательность имеет предел, причем этот предел равен ее точной верхней грани. Несмотря на простоту доказательства, эта теорема оказывается очень удобной для нахождения пределов многих… … Википедия
Теорема Сохоцкого — Вейерштрасса — теорема комплексного анализа, описывающая поведение голоморфной функции в окрестности существенной особой точки. Формулировка Теорема. Если точка z0 является существенно особой для функции f(z), аналитической в некоторой проколотой окрестности … Википедия
Теорема Вейерштрасса о целых функциях — У этого термина существуют и другие значения, см. Теорема Вейерштрасса. Теорема Любая целая функция , имеющая не более чем счётное количество нулей , где точка 0 нуль порядка , может быть представлена в виде бесконечного произведения вида … Википедия
Сохоцкого - Вейерштрасса теорема — теорема теории аналитических функций (См. Аналитические функции); всякая однозначная аналитическая функция в каждой окрестности существенно особой точки (См. Существенно особая точка) принимает значения, сколь угодно близкие к любому… … Большая советская энциклопедия