ЭЙЛЕРА ПОДСТАНОВКА


ЭЙЛЕРА ПОДСТАНОВКА

- замена переменной х=x(t) в интеграле


где - рациональная функция своих аргументов, сводящая этот интеграл к интегралу от рациональной функции и имеющая один из следующих трех видов. Первая подстановка Эйлера: если а>0, то

Вторая подстановка Эйлера: если корни х 1 и x2 квадратного трехчлена ах 2+bх+с действительные, то

Третья подстановка Эйлера: если c>0, то

(в правых частях равенств можно брать любые комбинации знаков). При всех Э. п. как старая переменная интегрирования x, так и радикал рационально выражаются через новую переменную t.
Две первые Э. п. позволяют всегда свести интеграл (1) к интегралу от рациональной функции на любом промежутке, на к-ром радикал пррнимает только действительные значения.
Геометрич. смысл Э. п. состоит в том, что кривая 2-го порядка

имеет рациональное параметрич. представление: именно, если за параметр tвзять угловые коэффициенты пучка секущих у-y0=t(x-x0), проходящих через точку (x0,y0) кривой (2), то координаты этой кривой будут рационально выражаться через переменную t. В случае, когда а>0 и, следовательно, кривая (2) является гиперболой, для того, чтобы получить 1-ю Э. п., за точку (x0,y0) следует взять одну из бесконечно удаленных точек, определяемых направлениями асимптот этой гиперболы; в случае, когда корни х 1 и х 2 квадратичного трехчлена ах2+bх+с действительны, для того, чтобы получить 2-ю Э. п., надо взять за точку (x0,y0) одну из точек (x1.0) или (х 2, 0); а в случае, когда с>0, чтобы получить 3-ю Э. п.- одну из точек пересечения кривой (2) с осью ординат, т. е. одну из точек

Л. Д. Кудрявцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ЭЙЛЕРА ПОДСТАНОВКА" в других словарях:

  • ЭЙЛЕРА ПРЕОБРАЗОВАНИЕ — 1) Э. п. рядов: если дан числовой ряд то ряд наа. рядом, полученным из ряда (1) Э. п. рядов. Здесь Если ряд (1) сходится, то сходится и ряд (2) и притом к той же сумме, что и ряд (1). Если ряд (2) сходится (в этом случае ряд (1) может… …   Математическая энциклопедия

  • Список объектов, названных в честь Леонарда Эйлера — Существует множество математических и физических объектов, названных в честь Леонарда Эйлера: Содержание 1 Теоремы 2 Лемма 3 Уравнения 4 …   Википедия

  • Подстановки Эйлера — Подстановки Эйлера  подстановки, приводящие интегралы вида , где   иррациональная функция, к интегралам от рациональных функций. Предложены Л. Эйлером в 1768 году. Содержание 1 Подстановки …   Википедия

  • Уравнение Коши — Эйлера — В математике ( дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному уравнению с… …   Википедия

  • Уравнение Коши - Эйлера — В математике ( дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному уравнению с… …   Википедия

  • Тригонометрические тождества — Тригонометрические тождества  математические выражения для тригонометрических функций, которые выполняются при всех значениях аргумента (из общей области определения). Содержание 1 Основные тригонометрические формулы …   Википедия

  • Однородная функция — степени   числовая функция такая, что для любого и выполняется равенство: причём называют порядком однородности. Различают также положительно однородные функции, для которых равенство …   Википедия

  • Уравнение Коши — В математике (дифференциальных уравнениях), уравнение Коши  Эйлера (Эйлера  Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному… …   Википедия

  • МНОГОМЕРНАЯ ВАРИАЦИОННАЯ ЗАДАЧА — вариационная задача с частными производными, задача вариационного исчисления, в к рой требуется определить экстремум функционала, зависящего от функций многих независимых переменных. Обычные вариационные задачи, в к рых рассматриваются… …   Математическая энциклопедия

  • КАЛИБРОВОЧНЫЕ ПОЛЯ — (компенсирующие поля), векторные поля, обеспечивающие инвариантность ур ний движения относительно калибровочных преобразований (см. КАЛИБРОВОЧНАЯ СИММЕТРИЯ). Примеры таких полей эл. магн. поле в электродинамике, а также глюонные поля в квантовой… …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.