ШТУРМА - ЛИУВИЛЛЯ УРАВНЕНИЕ

ШТУРМА - ЛИУВИЛЛЯ УРАВНЕНИЕ

обыкновенное дифференциальное уравнение 2-го порядка вида

рассматриваемое на конечном или бесконечном интервале ( а, b)изменения переменном х, где р(х), l (х), r (х) - заданные коэффициенты, - комплексный параметр, a у - искомое решение. Если р(x),r (х) положительны и р(х)имеет первую производную, а р(х)r(х) - вторую производную, то с помощью подстановки Лиувилля (см. [1]) это уравнение сводится к стандартному виду


Предполагается, что комплексная функция q(x) измерима в интервале ( а, b) и суммируема в каждом его внутреннем подинтервале. Наряду с уравнением рассматривается также неоднородное уравнение


где f(x) - заданная функция.
Если функция f(x)измерима в интервале ( а, b) и суммируема в каждом его внутреннем подинтервале, то каковы бы ни были комплексные числа с 0, с 1 и какова бы ни была внутренняя точка х 0 интервала ( а, b), уравнение (2) имеет в интервале ( а, b) одно и только одно решение удовлетворяющее условиям Для каждого функция является целой аналитич. цией В качестве точки х 0 можно взять также и конечный конец интервала ( а, b )(если этот конец регулярен).
Пусть и - какие-нибудь два решения уравнения (1). Их вронскиан

не зависит от хи равен нулю тогда и только тогда, когда эти решения линейно зависимы. Общее решение уравнения (2) представляется в виде


где

а 1, а 2 - произвольные постоянные, a - линейно независимые решения уравнения (1).
Справедлива следующая фундаментальная теорема Штурма (см. [1]): пусть даны два уравнения

.
если q1(x), q2 (х) действительны и q1(x)<q2(x)во всем интервале ( а, b), то между каждыми двумя нулями любого нетривиального решения первого уравнения заключен, по крайней мере, один нуль каждого решения второго уравнения.
Следующая теорема известна под названием теоремы сравнения (см. [1]): пусть левый конец интервала (a, b) конечен и и(х)есть решение уравнения (3), удовлетворяющее условиям а v(x) - решение уравнения (4) с теми же условиями; кроме того, пусть q1(x)<q2(x)во всем интервале ( а, b); тогда если и(х)в интервале ( а,b) имеет тнулей, то v(x)втом же интервале имеет не меньше m нулей и k-й нуль v(х)меньше k- гонуля и(х).
Одним из важных свойств уравнения (1) является существование для него так наз. операторов преобразования, имеющих простую структуру. Операторы преобразования возникли из общих алгебраич. соображений, связанных с теорией операторов обобщенного сдвига (преобразование базиса).
Для уравнения (1) существуют следующие типы операторов преобразования. Пусть - решение уравнения

удовлетворяющее условиям

Оказывается, что это решение допускает представление

где К( х,t) - непрерывная не зависящая от функция. причем

Интегральный оператор I+ К, определенный формулой

наз. оператором преобразования, сохраняющим условия в точке х=0. Он переводит функцию (решение простейшего уравнения - при условиях (6)) в решение уравнения (5) при тех же данных в точке х=0.
Пусть и - решения уравнения (5), удовлетворяющие условиям

Эти решения допускают представления

где и - непрерывные функции.
Введен (см.[8]|) новый вид операторов преобразования, сохраняющих асимптотику решений на бесконечности, а именно, оказалось, что для всех из верхней полуплоскости уравнение (5), рассматриваемое на полуоси при выполнении условия имеет решение представимое в виде


где функция К( х, t )является непрерывной и удовлетворяет неравенству


в к-ром

Кроме того,

Лит.:[1] Левитан Б. М., Саргсян И. С., Введение в спектральную теорию, М., 1970; [2] Наймарк М. А., Линейные дифференциальные операторы, 2 изд., М., 1969; [3] Левитан Б. М., Теория операторов обобщенного сдвига, М., 1973; [4] Марченко В. А., Операторы Штурма- Лиувилля и их приложения, К., 1977; [5] Dе1sarte J., лС. r. Acad. sci.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "ШТУРМА - ЛИУВИЛЛЯ УРАВНЕНИЕ" в других словарях:

  • ШТУРМА - ЛИУВИЛЛЯ ОБРАТНАЯ ЗАДАЧА — задача, в к рой требуется восстановить функцию (потенциал) q(x)по тем или иным спектральным характеристикам оператора А, порождённого дифференциальным выражением l[у] = y +q(x)yи нек рыми граничными условиями в гильбертовом пространстве L2(a, b) …   Математическая энциклопедия

  • ШТУРМА - ЛИУВИЛЛЯ ЗАДАЧА — задача, порожденная на конечном или бесконечном интервале ( а, b) изменения переменной хуравнением и нек рыми граничными условиями, где р(х) и r(х) положительны, l(х)действительна, а комплексный параметр. Начало глубокому изучению этой задачи… …   Математическая энциклопедия

  • Уравнение теплопроводности — Пример численного решения уравнения теплопроводности. Цветом и высотой поверхности передана температура данной точки. Уравнение теплопроводности  важное уравнение в частных производных, которое описывает распространение тепла в заданной… …   Википедия

  • ЛИУВИЛЛЯ НОРМАЛЬНАЯ ФОРМА — запись обыкновенного линейного дифференциального уравнения 2 го порядка в виде где параметр. Если и r(x)>0, то уравнение (1) приводится к Л. н. ф. (2) с помощью подстановки к рая наз. преобразованием Лиувилля (введена в [1]). Л. н. ф. играет… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ОБЫКНОВЕННОЕ — уравнение, в к ром неизвестной является функция от одного независимого переменного, причем в это уравнение входят не только сама неизвестная функция, но и ее производные различных порядков. Термин дифференциальные уравнения был предложен Г.… …   Математическая энциклопедия

  • ЛИНЕЙНОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВТОРОГО ПОРЯДКА — обыкновенное уравнение вида где x(t) искомая функция, a p(t), q(t).и r(t) заданные функции, непрерывные на нек ром промежутке (a, b). Для любых действительных чисел существует единственное решение x(t).уравнения (1) с начальными условиями причем… …   Математическая энциклопедия

  • Принцип максимума (уравнение теплопроводности) — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса …   Википедия

  • КОРТЕВЕГА - де ФРИСА УРАВНЕНИЕ — КдФ уравнение, уравнение вида предложено Д. Кортевегом и Г. де Фрисом [1] для описания распространения волн на мелкой воде. Оно может быть проинтегрировано с помощью метода обратной задачи теории рассеяния, к рый основан на представлении К. де Ф …   Математическая энциклопедия

  • Функция Грина — используется для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородная краевая задача). Функция Грина это обратный оператор к . Поэтому ее нередко символически обозначают как . Функции Грина полезны в… …   Википедия

  • Грина функция — Функция Грина используется для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородная краевая задача). Функция Грина линейного оператора L, действующего на обобщённые функции над многообразием (в частности, над… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»