РИССА ПОТЕНЦИАЛ

РИССА ПОТЕНЦИАЛ

a-потенциал,-потенциал вида


где m - положительная борелевская мера с компактным носителем на евклидовом пространстве - расстояние между точками . При и a=n-2 Р. п. совпадает с классическим ньютоновым потенциалом;при n=2 и предельным случаем Р. п. в нек-ром смысле является логарифмический потенциал. При и Р. п. есть супергармонич. функция во всем пространстве ; при этом в классич. случае a=n-2 вне носителя S'(m) меры m потенциал есть гармонич. функция. При a>n-2 Р. п. Va(x). есть субгармонич. функция вне S(m). При всех a>0 Р. п. Va(x) - полунепрерывная снизу функция в , непрерывная вне S(m).

Из общих свойств Р. п. важнейшими являются следующие. П р и н ц и п н е п р е р ы в н о с т и: если и сужение непрерывно в точке х 0, то Va(x)непрерывен в х 0 как функция на всем О г р а н и ч е н н ы й п р и н ц и п м а к с и м у м а: если , то всюду в . При справедлив более точный п р и н ц и п м а к с и м у м а: если , то всюду в (это утверждение остается верным и при п=, то есть для логарифмич. потенциала).

Теория емкости для Р. п. строится, напр., исходя из понятия a-энергии меры m:


Для компакта Kможно положить


где нижняя грань берется по всем мерам m, сосредоточенным на Kи таким, что m(K)= 1; тогда a-е м к о с т ь равна

Если , то нижняя грань достигается на сосредоточенной на Kе м к о с т н о й м е р е l, l(K)=1, порождающей соответствующий е м к о с тн ы й a-п о т е н ц и а л V(х;a, l). Дальнейшее построение a-емкостей произвольных множеств производится так же, как и для классич. емкостей.

Р. п. назван по имени М. Рисса (см. [2]), получившего ряд важных свойств Р. п.; впервые такие потенциалы были исследованы О. Фростманом (см. [1]).

Лит.:[1] F r o s t m a n n О., "Medd. Lunds Univ. Mat. Sem.", 1935, v. 3; [2] R i e s z M., "Ada sci. math. Szeged", 1938, v. 9, p. 1-42; [3] Л а н д к о ф Н. С., Основы современной теории потенциала, М., 1966; [4] Х е й м а н У., Кеннеди П., Субгармонические функции, пер. с англ., т. 1, М., 1980. Е. <Д. Соломенцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "РИССА ПОТЕНЦИАЛ" в других словарях:

  • БЕССЕЛЕВ ПОТЕНЦИАЛ — потенциал вида где точки евклидова пространства борелевская мера на модифицированная цилиндрическая функция (или бесселева функция) 2 го рода порядка , или функция М …   Математическая энциклопедия

  • НЕЛИНЕЙНЫЙ ПОТЕНЦИАЛ — порожденная радоновской мерой функция точки xевклидова пространства , . , нелинейно зависящая от порождающей меры. Напр., при исследовании свойств решений дифференциальных уравнений с частными производными и граничных свойств аналитич. ций… …   Математическая энциклопедия

  • ПОТЕНЦИАЛА ТЕОРИЯ — в первоначальном понимании учение о свойствах сил, действующих по закону всемирного тяготения. В формулировке этого закона, данной И. Ньютоном (I. Newton, 1687), речь идет только о силах взаимного притяжения, действующих на две материальные… …   Математическая энциклопедия

  • КРАЕВАЯ ЗАДАЧА — теории потенциала основная задача потенциала теории как классической, так и абстрактной. Поскольку классические ньютонов и логарифмич. потенциалы удовлетворяют определенным дифференциальным уравнениям с частными производными эллиптич. типа, а… …   Математическая энциклопедия

  • ВЫМЕТАНИЯ МЕТОД — метод решения Дирихле задачи для Лапласа уравнения, развитый А. Пуанкаре (см. [1], [2], а также [4]) и состоящий в следующем. Пусть D ограниченная область евклидова пространства граница D. Пусть мера Дирака, сосредоточенная в точке ; ньютонов… …   Математическая энциклопедия

  • ЕМКОСТЬ — множества функция множества, возникшая в потенциала теории как аналог физич. понятия электростатич. емкости. Пусть Sи S* две гладкие замкнутые гиперповерхности в евклидовом пространстве Rn, причем S* о. ватывает S. Такую систему наз.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»