ОТКРЫТОЕ ОТОБРАЖЕНИЕ

ОТКРЫТОЕ ОТОБРАЖЕНИЕ

теорема об открытом отображений: линейный непрерывный оператор А , отображающий банахово пространство Xна все банахово пространство У, является открытым отображением, т. е. A(G).открыто в Yдля любого G, открытого в X; доказана С. Банахом (S. Banach). В частности, непрерывный линейный оператор А, отображающий взаимно однозначно банахово пространство Xна банахово пространство Y, является гомеоморфизмом, т. <е. А -1- также линейный непрерывный оператор (теорема Банаха о гомеоморфизме).

Условиям теоремы об О. о. удовлетворяет, например, всякий ненулевой линейный непрерывный функционал, определенный на вещественном (комплексном) банаховом пространстве Xсо значениями в R (в С).

Теорема об О. о. допускает следующее обобщение: непрерывный линейный оператор, отображающий совершенно полное тонологич. векторное пространство Xна бочечное пространство Y, есть открытое отображение. К теореме об О. о. примыкает теорема о замкнутом графике (см. Замкнутый график, теорема о замкнутом графике).

Лит.:[1] Иосида К., Функциональный анализ, пер. с англ., М., 1967; [2] Робертсон А. <П., Робортсон В. Дж., Топологические векторные пространства, пер. с англ., М., 1967. В. И. Соболев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужна курсовая?

Смотреть что такое "ОТКРЫТОЕ ОТОБРАЖЕНИЕ" в других словарях:

  • ОТКРЫТОЕ ОТОБРАЖЕНИЕ — отображение одного топологич. пространства в другое, при к ром образ каждого открытого множества открыт. Проектирование топологич. произведении на сомножители О, о. Открытость отображения можно толковать как вид непрерывности обратного к нему… …   Математическая энциклопедия

  • Открытое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • ОТОБРАЖЕНИЕ ПЕРИОДОВ — отображение, сопоставляющее точке s базы Sсемейства алгебраич. многообразий над полем С комплексных чисел когомо логии слоя над этой точкой, снабженные Ходжа структурой. Полученная при этом структура Ходжа рассматривается как точка в многообразии …   Математическая энциклопедия

  • БИКОМПАКТНОЕ ОТОБРАЖЕНИЕ — отображение одного пространства в другое, при к ром прообраз каждой точки есть бикомпакт (см. Бикомпактное пространство). Требование бикомпактности отображения особенно полезно в соединении с другими ограничениями на отображение. Прежде всего… …   Математическая энциклопедия

  • Непрерывное отображение — или непрерывная функция в математике  это отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений. Наиболее общее определение формулируется для отображений… …   Википедия

  • Замкнутое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • МЕРОМОРФНОЕ ОТОБРАЖЕНИЕ — комплексных пространств обобщение понятия мероморфной функции. Пусть Xи Y комплексные пространства, А открытое подмножество в X такое, что нигде не плотное аналитич. одмпожество, и пусть дано аналитич. отображение Отображение f наз. мероморфным… …   Математическая энциклопедия

  • РАЦИОНАЛЬНОЕ ОТОБРАЖЕНИЕ — обобщение понятия рациональной функции на алгебраич. многообразии. А именно, р а ц и о н а л ь н ы м о т о бр а ж е н и е м неприводимого алгебраич. многообразия Xв алгебраич. многообразие Y(оба определены над полем k). наз. класс эквивалентности …   Математическая энциклопедия

  • ТРАНСВЕРСАЛЬНОЕ ОТОБРАЖЕНИЕ — трансверсально регулярное отображение, отображение, обладающее нек рыми свойствами общего положения. Пусть векторное расслоение над конечным клеточным пространством X, и пусть тотальное пространство расслоения вложено как открытое подмножество в… …   Математическая энциклопедия

  • АНАЛИТИЧЕСКОЕ ОТОБРАЖЕНИЕ — аналитический морфизм, морфизм аналитических пространств, рассматриваемых как окольцованные про странства. А. о. пространства в пространство есть пара , где непрерывное отображение, а гомоморфизм пучков колец на X. В случае комплексных… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»