ОРТОГОНАЛИЗАЦИЯ

ОРТОГОНАЛИЗАЦИЯ

процесс ортогонализации,- алгоритм построения для данной линейно независимой системы векторов евклидова или эрмитова пространства V ортогональной системы ненулевых векторов, порождающих то же самое подпространство в V. Наиболее известным является процесс ортогонализации Шмидта (или Грама - Шмидта), при к-ром по линейно независимой системе al,...,ak строится ортогональная система bl,...,bk такая, что каждый вектор bi (i=1,...,k).линейно выражается через al,...,ai то есть bi=, где C=||gij|| - верхняя треугольная матрица. При этом можно добиться того, чтобы система {bi} была ортонормированной и чтобы диагональные элементы gij матрицы Сбыли положительны; этими условиями система {bi} и матрица Сопределяются однозначно. .

Процесс Грама-Шмидта состоит в следующем. Полагают b11;если уже построены векторы bl,...,bi то


где

j=1,...,i, найдены из условия ортогональности вектора bi+1 к bl,...,bi. Геометрии, смысл описанного процесса состоит в том, что на каждом шагу вектор bi+1 является перпендикуляром, восстановленным к линейной оболочке векторов al,...,ai до конца вектора bi+1. Произведение длин |bi|...|bk| равно объему параллелепипеда, построенного на векторах системы { а i}, как на ребрах. Нормируя полученные векторы bi, получают искомую ортонормированную систему. Явное выражение векторов bi через al,...,ak дает формула


(определитель в правой части следует формально разложить по последнему столбцу). Соответствующая ор-тонормированная система имеет вид


где Г i - Грама определитель системы al,...,aj.

Этот процесс применим также и к счетной системе векторов.

Процесс Грама-Шмидта может быть истолкован как разложение невырожденной квадратной матрицы в произведение ортогональной (или унитарной матрицы в случае эрмитова пространства) и верхней треугольной матрицы с положительными диагональными элементами, что есть частный случай Ивасавы разложения.

Лит.:[1] Гантмахер Ф. Р., Теория матриц, 2 изд., М., 1966; Е2] Курош А. Г., Курс высшей алгебры, 11 изд., М., 1975. И. В. Проскуряков.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "ОРТОГОНАЛИЗАЦИЯ" в других словарях:

  • Ортогонализация — ― процесс построения по заданному базису линейного пространства некоторого ортогонального базиса, который имеет ту же самую линейную оболочку. Ввиду удобства и важности ортогональных базисов в различных задачах, важны и процессы ортогонализации.… …   Википедия

  • ортогонализация — ortogonalizacija statusas T sritis fizika atitikmenys: angl. orthogonalization vok. Orthogonalisierung, f rus. ортогонализация, f pranc. orthogonalisation, f …   Fizikos terminų žodynas

  • ортогонализация — ortogonalizavimas statusas T sritis fizika atitikmenys: angl. orthogonalization vok. Orthogonalisierung, f rus. ортогонализация, f pranc. orthogonalisation, f …   Fizikos terminų žodynas

  • ОРТОГОНАЛИЗАЦИЯ СИСТЕМЫ ФУНКЦИЙ — построение для заданной системы функций {fn (х)}, интегрируемых с квадратом на отрезке [ а, Ъ]функций ортогональной системы {jn(x)} путем применения нек рого процесса ортогонализации или же путем продолжения функций fn(x).на более длинный… …   Математическая энциклопедия

  • Ортогонализация Грама-Шмидта — Процесс Грама ― Шмидта ― наиболее известный алгоритм ортогонализации, при котором по линейно независимой системе строится ортогональная система такая, что каждый вектор bi линейно выражается через , то есть матрица перехода от {ai} к {bi} ―… …   Википедия

  • Ортогонализация Грама ― Шмидта — Процесс Грама ― Шмидта ― наиболее известный алгоритм ортогонализации, при котором по линейно независимой системе строится ортогональная система такая, что каждый вектор bi линейно выражается через , то есть матрица перехода от {ai} к {bi} ―… …   Википедия

  • КАРЛЕМАНА ТЕОРЕМА — 1) К. т. о квазианалитических классах функций необходимое и достаточное условие квазианалитичности в смысле Адамара. найденное Т. Карлеманом [1] (см. также [5]). Класс K действительных функций f(x), бесконечно дифференцируемых на отрезке [ а, b] …   Математическая энциклопедия

  • ОРТОГОНАЛЬНЫЙ РЯД — ряд вида где ортонормированная система функций (онс) относительно меры : Начиная с 18 в. при изучении различных вопросов математики, астрономии, механики и физики (движение планет, колебание струн, мембран и др.) в исследованиях Л. Эйлера (L.… …   Математическая энциклопедия

  • Список алгоритмов — Эта страница информационный список. Основная статья: Алгоритм Ниже приводится список алгоритмов, группированный по категориям. Более детальные сведения приводятся в списке структур данных и …   Википедия

  • Ортогональный базис — Ортогональный (ортонормированный) базис  ортогональная (ортонормированная) система элементов линейного пространства со скалярным произведением, обладающая свойством полноты. Содержание 1 Конечномерный случай 2 …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»