НЕПРИВОДИМЫЙ МОДУЛЬ

НЕПРИВОДИМЫЙ МОДУЛЬ

простой модуль,- ненулевой унитарный модуль Мнад кольцом Д с единицей, содержащий лишь два подмодуля - нулевой и сам М.

Примеры: 1) если - кольцо целых чисел, то неприводимые R-модули - это абелевы группы простого порядка; 2) если R- тело, то неприводимые R-модули - это одномерные векторные пространства над R; 3) если D- тело, V- левое векторное пространство над D,- кольцо линейных преобразований пространства V-(или плотное подкольцо этого кольца), то правый R-модуль неприводим; 4) если G- группа, k- поле, то неприводимые представления группы Gнад k- это в точности Н. м. над групповой алгеброй kG.

Правый R-модуль Мнеприводим тогда и только тогда, когда он изоморфен R/I, где I - нек-рый максимальный правый идеал в R. Если А, B- неприводимые Д-модули, то либо f=0, либо f - изоморфизм (откуда следует, что кольцо эндоморфизмов Н. м. является телом). Если же R - алгебра над алгебраически замкнутым полем k, А и В- Н. м. над R, то (лемма Шура)

Понятие Н. м. является одним из основных в теории колец и теории представлений групп. С его помощью определяются композиционный ряд и цоколь модуля, Джекобсона радикал модуля и кольца, вполне приводимый модуль. Н. м. участвуют в определении ряда важных классов колец: классически полупростых колец, примитивных колец и др.

Лит.:[1] Джекобсон Н., Строение колец, пер. с англ., М., 1961; [2] Картис Ч., Райнер И., Теория представлений конечных групп и ассоциативных алгебр, пер. сангл., М., 1969; [3]. Лам бек И., Кольца и модули, пер. с англ., М., 1971; [4] Фейс К., Алгебра: кольца, модули и категории, пер. с англ., т. 1-2, М., 1977-79.

А. В. Михалев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "НЕПРИВОДИМЫЙ МОДУЛЬ" в других словарях:

  • МОДУЛЬ — абелева группа с кольцом операторов. М. является обобщением (линейного) векторного пространства над полем Кдля случая, когда Кзаменяется нек рым кольцом. Пусть задано кольцо А. Аддитивная абелева группа Мназ. левым А модулем, если определено… …   Математическая энциклопедия

  • ВПОЛНЕ ПРИВОДИМЫЙ МОДУЛЬ — модуль Анад ассоциативным кольцом R, представимый в виде суммы своих неприводимых R подмодулей (см. Неприводимый модуль). Эквивалентные определения: Аявляется суммой минимальных подмодулей; Аизоморфен прямой сумме неприводимых модулей; Асовпадает …   Математическая энциклопедия

  • ГИЛЬБЕРТА ТЕОРИЯ — 1) Г. т. о базисе: если А коммутативное нётерово кольцо и кольцо многочленов от с коэффициентами в А, то и нётерово кольцо. В частности, в кольце многочленов от конечного числа переменных над полем или над кольцом целых чисел любой идеал… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКОЕ ЧИСЛО — Ч комплексное (в частности, действительное) число, являющееся корнем многочлена с рациональными коэффициентами, из к рых не все равны нулю. Если Ч А. ч., то среди всех многочленов с рациональными коэффициентами, имеющих своим корнем, существует… …   Математическая энциклопедия

  • СРАВНЕНИЕ ПО ПРОСТОМУ МОДУЛЮ — сравнение, в к ром модуль является простым числом. Отличительной чертой теории С. по п. м. является то, что классы вычетов по модулю . образуют конечное поле из рэлементов. Поэтому С. по п. м. можно трактовать как уравнения над простыми конечными …   Математическая энциклопедия

  • РАЦИОНАЛЬНОЕ ПРЕДСТАВЛЕНИЕ — а л г е бр а и ч е с к о й г р у п п ы G линейное представление алгебраич. группы G над алгебраически замкнутым полем kв конечномерном векторном пространстве Vнад k, являющееся рациональным (и тем самым регулярным) гомоморфизмом группы Gв GL(V).… …   Математическая энциклопедия

  • Карацуба — Карацуба, Анатолий Алексеевич Карацуба Анатолий Алексеевич Дата рождения: 31 января 1937(1937 01 31) …   Википедия

  • Карацуба, Анатолий Алексеевич — Карацуба Анатолий Алексеевич Дата рождения: 31 января 1937 …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»