НЕПРЕРЫВНЫЙ ФУНКЦИОНАЛ

НЕПРЕРЫВНЫЙ ФУНКЦИОНАЛ

- непрерывный оператор, отображающий топологическое и, как правило, векторное пространство в или . Поэтому определение и признаки непрерывности произвольного оператора сохраняются с соответствующей спецификацией и для функционалов. Так, напр.:

1) для того чтобы функционал где М- подмножество топологического пространства X, был непрерывен в точке , для любого должна существовать окрестность Uточки такая, что при (определение непрерывности функционала);

2) функционал, непрерывный на компактном множестве отделимого топологического векторного пространства, ограничен на этом множестве и достигает на нем своих точных границ (теорема Вейерштрасса);

3) так как всякий ненулевой линейный функционал отображает банахово пространство на все (или ), то он осуществляет открытое отображение, т. е. образ любого открытого множества есть открытое множество в (или ).

В. И. Соболев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "НЕПРЕРЫВНЫЙ ФУНКЦИОНАЛ" в других словарях:

  • Непрерывный функционал — Непрерывное отображение или непрерывная функция это такое отображение, у которого небольшие изменения аргумента приводят к небольшим изменениям значения отображения. Это понятие определятся немного по разному в различных разделах математики;… …   Википедия

  • Непрерывный линейный оператор — Линейный непрерывный оператор дейсвтующий из X в Y( ) это линейное отображение из X в Y обладающее свойством непрерывности. Термин линейный непрерывный оператор обычно употребляют в случае, когда . Если …   Википедия

  • Функционал — У этого термина существуют и другие значения, см. Функционал (значения). Функционал  это отображение, заданное на произвольном множестве и имеющее числовую область значений: обычно множество вещественных чисел или комплексных чисел …   Википедия

  • Линейный непрерывный оператор — Линейный непрерывный оператор, действующий из в ( ) это линейное отображение из в , обладающее свойством непрерывности. Термин линейный непрерывный оператор обычно употребляют в случае, когда . Если …   Википедия

  • ХАРАКТЕРИСТИЧЕСКИЙ ФУНКЦИОНАЛ — аналог понятия характеристической функции, используемый в бесконечномерном случае. Пусть непустое множество, Г векторное пространство определенных на действительных функций, наименьшая алгебра подмножеств относительно к рой измеримы все функции… …   Математическая энциклопедия

  • Линейный функционал — Линейный функционал  функционал, обладающий свойством линейности по своему аргументу: где   линейный функционал, и   функции из его области определения,   число (к …   Википедия

  • ЛИНЕЙНЫЙ ФУНКЦИОНАЛ — линейная форма, на векторном пространстве Lнад полем k отображение такое, что .для всех Понятие Л. ф., будучи важным специальным случаем понятия линейного оператора, является одним из основных в линейной алгебре и играет значительную роль в… …   Математическая энциклопедия

  • НЕКОРРЕКТНЫЕ ЗАДАЧИ — точнее некорректно поставленные задачи, задачи, для к рых не удовлетворяется хотя бы одно из приводимых ниже условий, характеризующих корректно поставленные задачи [короче корректные задачи (к. з.)]. Задача определения решения из метрич.… …   Математическая энциклопедия

  • Однородная функция — степени   числовая функция такая, что для любого и выполняется равенство: причём называют порядком однородности. Различают также положительно однородные функции, для которых равенство …   Википедия

  • Сопряжённый оператор — Содержание 1 Общее линейное пространство 2 Топологическое линейное пространство …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»