АБСОЛЮТНО ИНТЕГРИРУЕМАЯ ФУНКЦИЯ

АБСОЛЮТНО ИНТЕГРИРУЕМАЯ ФУНКЦИЯ

функция, у к-рой интегрируема ее абсолютная величина. Если функция интегрируема по Риману на отрезке то ее абсолютная величина интегрируема по Риману на этом отрезке и


Аналогичное утверждение справедливо для функции ппеременных, интегрируемой по Риману на кубируемой области га-мерного евклидова пространства. Обратное утверждение для функций, интегрируемых по Риману, не справедливо: функция равная 1 для рациональных хи - 1 для иррациональных, не интегрируема по Риману, а ее абсолютная величина интегрируема. Для функций, интегрируемых по Лебегу, дело обстоит иначе: функция интегрируема по Лебегу (суммируема) на измеримом множестве Е n -мерного пространства тогда и только тогда, когда на этом множестве интегрируема по Лебегу ее абсолютная величина, при этом справедливо неравенство:


В случае несобственных одномерных интегралов в смысле Римана или Лебега по промежутку (при условии, что функция f(x) интегрируема по Риману или, соответственно, по Лебегу на любом отрезке ) из существования несобственного интеграла от абсолютной величины функции


следует и существование интеграла


но не наоборот (см. Абсолютно сходящийся несобственный интеграл). При этом, если существует несобственный интеграл


то функция f(х).интегрируема по Лебегу на промежутке [ а, b).и несобственный интеграл от нее равен интегралу Лебега.

В случае функций многих переменных (число к-рых n>1) несобственные интегралы обычно определяются таким образом, что существование несобственного интеграла от абсолютной величины функции равносильно существованию несобственного интеграла от самой функции.

Пусть значения функции принадлежат нек-рому банахову пространству с нормой Тогда функция наз. абсолютно интегрируемой на измеримом множестве Е, если существует интеграл


при этом, если функция интегрируема на Е, то


Лит.:[1] Ильин В. А., Позняк 9. Г., Основы математического анализа, ч. 1, 3 изд., М., 1971; [2] Кудрявцев Л. Д., Математический анализ, т. 1, 2 изд., М., 1973; [3]Никольский С. М., Курс математического анализа, 2 изд., т. 1, М., 1975; [4] Шварц Л., Анализ, пер. с франц., т. 1, М., 1972. Л. <Д. <Кудрявцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "АБСОЛЮТНО ИНТЕГРИРУЕМАЯ ФУНКЦИЯ" в других словарях:

  • Абсолютно непрерывное распределение — Плотность вероятности один из способов задания вероятностной меры на евклидовом пространстве . В случае когда вероятностная мера является распределением случайной величины, говорят о плотности случайной величины. Содержание 1 Плотность… …   Википедия

  • ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… …   Энциклопедия Кольера

  • ПЛОТНОСТЬ ВЕРОЯТНОСТИ — плотность распределения вероятностей, производная функции распределения, отвечающей абсолютно непрерывной вероятностной мере. Пусть X случайный вектор, принимающий значения в re мерном евклидовом пространстве , Р( х г, . . ., х п). его функция… …   Математическая энциклопедия

  • ДВОЙСТВЕННОСТЬ — 1) Д. в алгебраической геометрии двойственность между различными пространствами когомологий на алгебраич. многообразиях. Когомологий когерентных пучков. Пусть X неособое проективное алгебраич. многообразие размерности nнад алгебраически замкнутым …   Математическая энциклопедия

  • Плотность вероятности — один из способов задания вероятностной меры на евклидовом пространстве . В случае, когда вероятностная мера является распределением случайной величины, говорят о плотности случайной величины. Содержание 1 Плотность вероятности …   Википедия

  • Плотность распределения — Плотность вероятности один из способов задания вероятностной меры на евклидовом пространстве . В случае когда вероятностная мера является распределением случайной величины, говорят о плотности случайной величины. Содержание 1 Плотность… …   Википедия

  • Плотность случайной величины — Плотность вероятности один из способов задания вероятностной меры на евклидовом пространстве . В случае когда вероятностная мера является распределением случайной величины, говорят о плотности случайной величины. Содержание 1 Плотность… …   Википедия

  • Интеграл — (от лат. integer целый)         одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны, отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости… …   Большая советская энциклопедия

  • ЭРГОДИЧЕСКАЯ ТЕОРИЯ — Введение Э. т. (метрическая теория динамических систем) раздел теории динамических систем, изучающий их статистич. свойства. Возникновение Э. т. (1 я треть 20 в.) было стимулировано попытками доказать эргодическую гипотезу (термин введён П. и Т.… …   Физическая энциклопедия

  • Условное математическое ожидание — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»