АЛГЕБРАИЧЕСКАЯ ТОЧКА ВЕТВЛЕНИЯ
- АЛГЕБРАИЧЕСКАЯ ТОЧКА ВЕТВЛЕНИЯ
а л-гебраическая особая точка,- изолированная точка ветвления аконечного порядка аналитич. функции обладающая тем свойством, что для любого элемента аналитич. родолжения этой функции, регулярного в области, имеющей точку а граничной точкой, существует предел Точнее, точка а плоскости комплексного переменного , являющаяся особой для полной аналитической функции при продолжении нек-рого правильного элемента этой функции с центром вдоль путей, проходящих через а, наз. алгебраической точкой ветвления, если выполняются следующие условия. 1) Существует такое положительное число , что элемент может быть продолжен вдоль любой непрерывной кривой, лежащей в кольце 2) Существует такое натуральное , что если - любая точка кольца D, то аналитич. родолжение элемента в кольце Dдает в точности kразличных элементов функции с центром ; если -какой-либо элемент с центром , то все остальные элементов с центром получаются аналитич. родолжением по замкнутым путям, охватывающим точку а. 3) Значения всех элементов, получаемых из продолжением в Dв точках кольца D, стремятся к определенному, конечному пли бесконечному, пределу, когда стремится к а, оставаясь в D.
Число k-1 наз. порядком А. т. в. Все ветви функции получаемые аналитнч. продолжением элемента в кольце D, могут быть представлены в проколотой окрестности точки апри помощи обобщенного ряда Лорана (ряда Пюизё):
Бесконечно удаленная точка наз. А. т. в. для функции, если точка является А. т. в. функции
Может существовать несколько (и даже бесконечно много) различных А. т. в. и правильных точек полной аналитпч. функции с одним и тем же аффиксом а.
Лит.:[1] Маркушевич А. И., Теория аналитических Функций, 2 изд., т. 2, М., 1968, гл. 8; [2] Гурвиц А., Курант Р., Теория функций, пер. с нем., М., 1968, ч. 3, гл. 4.
Е. Д. Соломснцев.
Математическая энциклопедия. — М.: Советская энциклопедия.
И. М. Виноградов.
1977—1985.
Полезное
Смотреть что такое "АЛГЕБРАИЧЕСКАЯ ТОЧКА ВЕТВЛЕНИЯ" в других словарях:
ВЕТВЛЕНИЯ ТОЧКА — особая точка многозначного характера, изолированная особая точка а аналитич. функции одного комплексного переменного такая, что аналитическое продолжение к. л. элемента функции вдоль замкнутого пути, охватывающего а, приводит к новым элементам .… … Математическая энциклопедия
ПОДВИЖНАЯ ОСОБАЯ ТОЧКА — особая точка z0 решения дифференциального уравнения F(z, w, w )=0 (F аналитич. функция), рассматриваемого как функция w(z).комплексного переменного z, при условии, что решения того же уравнения с близкими начальными данными имеют близкие к z0… … Математическая энциклопедия
АЛГЕБРАИЧЕСКАЯ ФУНКЦИЯ — функция переменных x1,...xn удовлетворяющая уравнению где F неприводимый многочлен от с коэффициентами из нек рого поля K, наз. полем констант. А. ф., заданная над этим полем, наз. А. ф. над полем K. Многочлен часто записывается по степеням… … Математическая энциклопедия
Ряд Пюизё — (дробно степенной ряд) обобщение понятия степенного ряда, в котором используются не только целые, но и дробные (рациональные) показатели; допускаются также отрицательные показатели. Ряды Пюизё находят применение в различных разделах математики, в … Википедия
ДВОЙНАЯ ПЛОСКОСТЬ — алгебраическая поверхность, представляющая собой двумерный аналог гиперэллиптической кривой. Неособая алгебраическая проективная поверхность Xнад алгебраически замкнутым полем кназ. двойной плоскостью, если ее поле рациональных функций… … Математическая энциклопедия
Калькулятор — У этого термина существуют и другие значения, см. Калькулятор (значения). Современный инженерный калькулятор Калькулятор … Википедия
Математика гармонии — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени … Википедия
АНАЛИТИЧЕСКАЯ ТЕОРИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ — раздел теории обыкновенных дифференциальных уравнений, в к ром решения исследуются с точки зрения теории аналитич. функций. Типичная постановка задачи в А. т. д. у. такова: дан нек рый класс дифференциальных уравнений, все решения к рых суть… … Математическая энциклопедия
ПОЛЕЙ КЛАССОВ ТЕОРИЯ — теория, дающая описание всех абелевых расширений (конечных расширений Галуа с абелевой группой Галуа) поля К, принадлежащего к одному из следующих типов: 1) К поле алгебраич. чисел, т. е. конечное расширение поля ; 2) К конечное расширение поля… … Математическая энциклопедия
Трансцендентные функции — аналитические функции, не являющиеся алгебраическими (см. Алгебраические функции (См. Алгебраическая функция)). Простейшими примерами Т. ф. служат Показательная функция, Тригонометрические функции, Логарифмическая функция. Если Т. ф.… … Большая советская энциклопедия