Гиперболический цилиндр — … Википедия
Гиперболический цилиндр — линейчатая цилиндрическая поверхность, уравнение которой может быть приведено к виду х2/а2 y2/b2 = 1. См. Поверхности второго порядка … Большая советская энциклопедия
Цилиндр — У этого термина существуют и другие значения, см. Цилиндр (значения). Прямой круговой цилиндр … Википедия
Параболический цилиндр — Параболический цилиндр. Параболический цилиндр цилиндрическая поверхность второго порядка, для которой образующей служит парабола. Ее получают при перемещении параболы по направляющей прямой. Тогда следом от параболы будет параболический… … Википедия
ЦИЛИНДРИЧЕСКАЯ ПОВЕРХНОСТЬ — цилиндр, поверхность, образуемая движением прямой (образующей), перемещающейся параллельно самой себе и пересекающей данную линию (направляющую). Направляющей цилиндрич. поверхности второго порядка служит линия второго порядки. В зависимости от… … Математическая энциклопедия
ПОВЕРХНОСТЬ ВТОРОГО ПОРЯДКА — множество точек 3 мерного действительного (или комплексноро) пространства, координаты к рых в декартовой системе удовлетворяют алгебраич. уравнению 2 й степени (*) Уравнение (*) может и не определять действительного геометрич. образа, в таких… … Математическая энциклопедия
Поверхность второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида в котором по крайней мере один из коэффициентов … Википедия
Поверхности второго порядка — Поверхность второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + a33z2 + 2a12xy + 2a23yz + 2a13xz + 2a14x + 2a24y + 2a34z + a44 = 0 в котором по крайней мере один из… … Википедия
ГЕОМЕТРИИ ОБЗОР — Геометрия раздел математики, тесно связанный с понятием пространства; в зависимости от форм описания этого понятия возникают различные виды геометрии. Предполагается, что читатель, приступая к чтению этой статьи, обладает некоторыми… … Энциклопедия Кольера
Дифференциальная геометрия — раздел геометрии, в котором геометрические образы изучаются методами математического анализа. Главными объектами Д. г. являются произвольные достаточно гладкие кривые (линии) и поверхности евклидова пространства, а также семейства линий и … Большая советская энциклопедия