Эффект Вавилова

Эффект Вавилова
Электромагнитное излучение
Синхротронное
Циклотронное
Тормозное
Тепловое
Монохроматическое
Черенковское
Переходное
Радиоизлучение
Микроволновое
Терагерцевое
Инфракрасное
Видимое
Ультрафиолетовое
Рентгеновское
Гамма-излучение
Ионизирующее
Реликтовое
Магнито-дрейфовое
Двухфотонное
Спонтанное
Вынужденное

Эффект Вавилова — Черенко́ва (излучение Вавилова — Черенкова) — свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде[1]. Черенковское излучение широко используется в физике высоких энергий для регистрации релятивистских частиц и определения их скоростей.

Содержание

История открытия

Излучение Вавилова — Черенкова в охлаждающей жидкости ядерного реактора

В 1934 году Павел Черенков проводил в лаборатории Сергея Вавилова исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение, вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде.

Уже первые эксперименты Черенкова, предпринятые по инициативе С. И. Вавилова, выявили ряд характерных особенностей излучения: свечение наблюдается у всех чистых прозрачных жидкостей, причём яркость мало зависит от их химического состава, излучение имеет поляризацию с преимущественной ориентацией электрического вектора вдоль направления первичного пучка, при этом в отличие от люминесценции не наблюдается ни температурного, ни примесного тушения. На основании этих данных Вавиловым было сделано основополагающее утверждение, что обнаруженное явление — не люминесценция жидкости, а свет излучают движущиеся в ней быстрые электроны.

Теоретическое объяснение явления было дано И. Таммом и И. Франком в 1937 году.

В 1958 году Черенков, Тамм и Франк были награждены Нобелевской премией по физике «за открытие и истолкование эффекта Черенкова». Манне Сигбан из Шведской королевской академии наук в своей речи отметил, что «открытие явления, ныне известного как эффект Черенкова, представляет собой интересный пример того, как относительно простое физическое наблюдение при правильном подходе может привести к важным открытиям и проложить новые пути для дальнейших исследований».

Механизм и геометрия излучения

Анимация излучения Вавилова-Черенкова

Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, превышающей скорость света в вакууме. Но к скорости движения света в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60—70 % от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.

В 1934 году Павел Черенков проводил исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение (которое теперь названо его именем), вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Чуть позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде. Это был как бы оптический эквивалент ударной волны, которую вызывает в атмосфере сверхзвуковой самолёт. Представить это явление можно по аналогии с волнами Гюйгенса, расходящимися вовне концентрическими кругами со скоростью света, причём каждая новая волна испускается из следующей точки на пути движения частицы. Если частица летит быстрее скорости распространения света в среде, она обгоняет волны. Пики амплитуды этих волн и образуют волновой фронт излучения Черенкова.

Излучение расходится конусом вокруг траектории движения частицы. Угол при вершине конуса зависит от скорости частицы и от скорости света в среде. Это как раз и делает излучение Черенкова столь полезным с точки зрения физики элементарных частиц, поскольку, определив угол при вершине конуса, можно рассчитать по нему скорость частицы.

Интересные следствия

  • Распространённое представление о том, что на больших глубинах в океане царит полный мрак, так как свет с поверхности туда не доходит, является ошибочным. Как следствие распада радиоактивных изотопов в океанской воде, в частности, калия-40, даже на больших глубинах вода слабо светится из-за эффекта Вавилова — Черенкова[2]. Существуют гипотезы, что большие глаза нужны глубоководным созданиям затем, чтобы видеть при столь слабом освещении.

См. также

Примечания

  1. «Черенкова – Вавилова излучение». Франк И. М. // Физическая энциклопедия. Гл. ред. Прохоров А. М. — М.: «Большая Российская энциклопедия», 1998. — Т. 5. — С. 448−450. — 760 с. — ISBN 5-85270-101-7
  2. Измерение фонового свечения на больших глубинах в океане  (англ.)

Ссылки




Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Эффект Вавилова" в других словарях:

  • Эффект Вавилова — Черенкова — Электромагнитное излучение Синхротронное Циклотронное Тормозное Тепловое Монохроматическое Черенковское Переходное Радиоизлучение Микроволновое Терагерцевое …   Википедия

  • Эффект Вавилова-Черенкова — Электромагнитное излучение Синхротронное Циклотронное Тормозное Равновесное Монохроматическое Черенковское Переходное Радиоизлучение Микроволновое Терагерцевое Инфракрасное Видимое Ультраф …   Википедия

  • эффект Вавилова-Черенкова — Vavilovo Čerenkovo reiškinys statusas T sritis radioelektronika atitikmenys: angl. Vavilov Tcherenkov effect vok. Vavilov Tcherenkov Effekt, m rus. эффект Вавилова Черенкова, m pranc. effet Vavilov et Tcherenkov, m …   Radioelektronikos terminų žodynas

  • Эффект Черенкова — Электромагнитное излучение Синхротронное Циклотронное Тормозное Равновесное Монохроматическое Черенковское Переходное Радиоизлучение Микроволновое Терагерцевое Инфракрасное Видимое Ультраф …   Википедия

  • Вавилова – Черенкова излучение — Электромагнитное излучение Синхротронное Циклотронное Тормозное Равновесное Монохроматическое Черенковское Переходное Радиоизлучение Микроволновое Терагерцевое Инфракрасное Видимое Ультраф …   Википедия

  • Вавилова — Черенкова излучение — Электромагнитное излучение Синхротронное Циклотронное Тормозное Равновесное Монохроматическое Черенковское Переходное Радиоизлучение Микроволновое Терагерцевое Инфракрасное Видимое Ультраф …   Википедия

  • ЭФФЕКТ — (1) физ. явление или результат, следствие каких либо причин, действий, влияние и др.; (2) Э. внутренний фотоэлектрический см. , (3) Э. динатронный испускание электронов в электронных приборах с поверхности металлического электрода при… …   Большая политехническая энциклопедия

  • эффект Черенкова-Вавилова — Čerenkovo reiškinys statusas T sritis fizika atitikmenys: angl. Tsherenkov effect vok. Tscherenkov Effekt, m rus. эффект Черенкова Вавилова, m; явление Черенкова, n pranc. effet Tsherenkov, m …   Fizikos terminų žodynas

  • ЧЕРЕНКОВА — ВАВИЛОВА ИЗЛУЧЕНИЕ — (эффект Вавилова Черенкова), возникает при движении в веществе заряженных частиц со скоростью, превышающей фазовую скорость света (см. ФАЗОВАЯ СКОРОСТЬ) в этом веществе. Обнаружено в 1934 г. П. А. Черенковым (см. ЧЕРЕНКОВ Павел Алексеевич) при… …   Энциклопедический словарь

  • Излучение Вавилова — Черенкова — Электромагнитное излучение Синхротронное Циклотронное Тормозное Равновесное Монохроматическое Черенковское Переходное Радиоизлучение Микроволновое Терагерцевое Инфракрасное Видимое Ультраф …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»