ВНЕШНЯЯ И ВНУТРЕННЯЯ КРАЕВЫЕ ЗАДАЧИ это:

ВНЕШНЯЯ И ВНУТРЕННЯЯ КРАЕВЫЕ ЗАДАЧИ

краевые задачи (к. з.) для эллиптич. уравнений с частными производными соответственно в конечной (внутренней) D+ и бесконечной (внешней) D - областях, на к-рые данная замкнутая гладкая поверхность S, гомеоморфная сфере, разделяет евклидово пространство R.3.

Основное отличие внешней к. з. от внутренней состоит в том, что в ней необходимо дополнительно к краевому условию потребовать от решения определенного поведения на бесконечности, обеспечивающего единственность решения и являющегося естественным с точки зрения физического происхождения данной задачи.

Напр., в случае внешней к. з. для уравнения Пуассона (функция f предполагается достаточно гладкой и финитной) достаточно потребовать, чтобы решение и(М).было регулярным на бесконечности, т. е. чтобы


В случае внешней к. з. для уравнения Пуассона в бесконечной плоской области условие регулярности на бесконечности сводится к требованию, чтобы решение и (М).было ограниченным на бесконечности:


В случае внешней к. з. для уравнения Гельмгольца требование регулярности на бесконечности оказывается недостаточным для выделения единственного решения и применяется так наз. излучения условие. Для области в


и для


причем знаки здесь выбираются в зависимости от условий задачи и выбора главного фундаментального решения. О других условиях на бесконечности см. Предельного поглощения принцип, Предельной амплитуды принцип.

Пусть теперь рассматриваются к. з. для линейного эллиптич. уравнения общего вида


в областях и евклидова пространства выделяемых замкнутой гладкой гиперповерхностью S, гомеоморфной сфере в , причем функции с и f предполагаются достаточно гладкими, f - финитная. Условия регулярности на бесконечности типа (1) или (2) будут достаточны во внешних к. з. соответственно при или в тех случаях, когда для оператора Lвыполняется принцип максимума и существует одно единственное главное фундаментальное решение; в частности, для этого необходимо ; см. [1], [2], [3]. Вопрос о применимости условия излучения, принципа предельного поглощения и принципа предельной амплитуды в общем виде нельзя считать полностью изученным (1977).

Кроме условий на бесконечности, внешняя и внутренняя к. з. могут отличаться условиями существования решения. Напр., в случае внутренней Неймана задачи, для уравнения Лапласа в конечной области необходимое условие существования решения имеет вид


где - заданная граничная функция в условии Неймана . Однако для внешней задачи Неймана в бесконечной области это условие уже не является необходимым.

Лит.:[1] Смирнов В. И., Курс высшей математики, т. 4, 5 изд., М., 1958; [2] Владимиров В. С., Уравнения математической физики, 2 изд., М., 1971 ;[3] Купрадзе В. Д., Граничные задачи теории колебаний и интегральные уравнения, М.-Л., 1950; [4] его же, Методы потенциала в теории, упругости, М., 1963; [5] Миранда К., Уравнения с частными производными эллиптического типа, пер. с итал., М., 1957. Е. Д. Соломенцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ВНЕШНЯЯ И ВНУТРЕННЯЯ КРАЕВЫЕ ЗАДАЧИ" в других словарях:

  • СМЕШАННАЯ И КРАЕВАЯ ЗАДАЧИ ДЛЯ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ И СИСТЕМ — задачи отыскания решений уравнений и систем с частными производными гиперболич. типа, удовлетворяющих на границе области их задания (или ее части) определенным условиям (см. Краевые условия, Начальные условия). Краевая задача для гиперболич.… …   Математическая энциклопедия

  • Сербия и Черногория — (Србия – Црна Гора; Srbija – Crna Gora), гос во на ЮВ. Европы, на Балканском п ове, пл. 102,2 км²; состоит из 2 республик: Сербия (включает области Косово и Воеводина) и Черногория. Столица – Бе …   Географическая энциклопедия

  • ГЕЛЬМГОЛЬЦА УРАВНЕНИЕ — уравнение с частными производными вида где с постоянное число. К Г. у. приводит изучение установившихся колебательных процессов. При Г. у. переходит в Лапласа уравнение. В случае, если в правой части Г. у. стоит функция , это уравнение наз.… …   Математическая энциклопедия

  • ЛОГАРИФМИЧЕСКИЙ ПОТЕНЦИАЛ — потенциал с логарифмическим ядром где |х у| расстояние между точками хи уевклидовой плоскости т. е. потенциал вида где интегрирование производится, вообще говоря, по произвольной борелевской мере с компактным носителем Физически можно представить …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ — уравнение вида где F заданная действительная функция точки х=(xt, ..., х п )области Dевклидова пространства Е п, и действительных переменных (и(х) неизвестная функция) с неотрицательными целочисленными индексами i1 ,..., in, k=0, ..., т, по… …   Математическая энциклопедия

  • ПОТЕНЦИАЛА ТЕОРИЯ — в первоначальном понимании учение о свойствах сил, действующих по закону всемирного тяготения. В формулировке этого закона, данной И. Ньютоном (I. Newton, 1687), речь идет только о силах взаимного притяжения, действующих на две материальные… …   Математическая энциклопедия

  • Соединённые Штаты Америки — Соединенные Штаты Америки США, гос во в Сев. Америке. Название включает: геогр. термин штаты (от англ, state государство ), так в ряде стран называют самоуправляющиеся территориальные единицы; определение соединенные, т. е. входящие в федерацию,… …   Географическая энциклопедия

  • система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… …   Словарь-справочник терминов нормативно-технической документации

  • ИНДЕКСА ФОРМУЛЫ — соотношения между аналитич. и топологич. инвариантами операторов нек рого класса. Именно, И. ф. устанавливают связь между аналитич. индексом линейного оператора (L0, L1 топологич. векторные пространства), определяемым формулой и измеряющим таким… …   Математическая энциклопедия

  • ПРОТЕЗЫ — (от греч. protithemi замещаю), механические приборы, приспособления и аппараты, возмещающие различные дефекты и скрадывающие повреждения отдельных частей тела. В большинстве случаев протезы являются функционально косметическими приборами,… …   Большая медицинская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»