- Производная Ли
-
Производная Ли тензорного поля
по направлению векторного поля
— главная линейная часть приращения тензорного поля
при его преобразовании, которое индуцировано локальной однопараметрической группой диффеоморфизмов многообразия, порождённой полем
.
Названа в честь норвежского математика Софуса Ли.
Обычно обозначается
.
Содержание
Определения
Аксиоматическое
Производная Ли полностью определяется следующими своими свойствами. Такое определение наиболее удобно для практических вычислений, но требует доказательства существования.
- Производная Ли
от скалярного поля
есть производная
по направлению
.
- Производная Ли
от векторного поля
есть скобка Ли векторных полей.
- Для произвольных векторных полей 1-формы
выполняется равенство
- (правило Лейбница) Для произвольных тензорных полей S и T, выполняется
Через поток
Пусть
—
-мерное гладкое многообразие и
— векторное поле на
.
Рассмотрим поток
по
, определяемый соотношением:
Обратное отображение к дифференциалу
,
однозначно продолжается до гомоморфизма
алгебры тензоров над
в алгебру тензоров над
. Таким образом произвольное тензорное поле
, однопараметрическое семейство полей
. Производная Ли может быть определена как
Выражения в координатах
, где
— скаляр.
, где
— вектор, а
— его компоненты.
, где
— 1-форма, а
— её компоненты.
, где
— 2-форма (метрика), а
— её компоненты.
Производная Ли для тензорного поля в неголономном репере
Пусть тензорное поле К типа (p, q) задано в неголономном репере
, тогда его производная Ли вдоль векторного поля Х задаётся следующей формулой:
,
где
, и введены следующие обозначения:
,
— объект неголономности.
Свойства
-линейно по
и по
. Здесь
— произвольное тензорное поле.
- Производная Ли — дифференцирование на кольце тензорных полей.
- На супералгебре внешних форм производная Ли является дифференцированием и однородным оператором степени 0.
- Пусть
и
— векторные поля на многообразии, тогда
- есть дифференцирование алгебры
, поэтому существует векторное поле
, называемое См. далее)
Физический смысл производной Ли
Пусть векторное поле
есть поле скоростей неинерциальной системы отсчёта относительно инерциальной системы отсчёта, то есть в каждой точке пространства
в каждый момент времени
определена скорость координатных сеток этих систем относительно друг друга. Тогда производная Ли вдоль векторного поля
переносит производную по времени от каких-либо тензорных полей
из неинерциальной системы отсчёта в инерциальную, тем самым определяя инвариантную производную по времени от тензорных полей.
Обобщения
Естественные расслоения
Пусть
— естественное гладкое расслоение, то есть функтор, действующий из категории гладких многообразий в категорию расслоений над ними:
. Произвольное векторное поле
порождает однопараметрическую группу диффеморфизмов
, продолжающуюся с помощью
на пространство расслоения
, то есть
. Производная этой группы в нуле даёт векторное поле
, являющееся продолжением
. Группа
также позволяет определить производную Ли по
от произвольных сечений
по такой же формуле, как и в классическом случае:
Отметим, что в общем случае производная Ли является элементом соответствующего вертикального расслоения
, то есть ядра отображения
, так как
. Если
— векторное расслоение, то существует канонический изоморфизм
. Оператор вертикального проектирования
позволяет представить производную Ли как сечение исходного расслоения:
Производная Ли по формам
Другое обобщение основано на исследовании супералгебры Ли дифференцирований супералгебры внешних форм. Среди всех таких дифференцирований особенно выделяются т. н. алгебраические, то есть те, которые равны 0 на функциях. Любое такое дифференцирование имеет вид
, где
— тангенциальнозначная форма, а оператор внутреннего дифференцирования
определяется по формуле
Здесь
— операция альтернирования отображения по всем переменным. Производная Ли по векторнозначной форме
определяется через суперкоммутатор операторов:
Её значение определяется тем, что любое дифференцирование
супералгебры
однозначно представимо в виде
, где
,
— некоторые векторнозначные формы. Кроме того, по формуле
можно ввести скобку Фролиха-Ниенхойса тангенциальнозначных форм.
Литература
- Ш. Кобаяси, К. Номидзу. Основы дифференциальной геометрии. — 1981. — Т. 1. — 344 с.
- Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы и приложения. — 2-е, перераб. — М.: Наука, 1986. — Т. 1. — 760 с.
- Ivan Kolář, Peter W. Michor, Jan Slovák. Natural operations in differential geometry. — 1-е изд. — Springer, 1993. — 434 с. — ISBN 978-3540562351
См. также
Категории:- Дифференциальная геометрия и топология
- Дифференциальные операторы
- Производная Ли
Wikimedia Foundation. 2010.