Алгоритм Эдмондса — Карпа

Алгоритм Эдмондса — Карпа

Алгоритм Эдмондса — Карпа

Алгоритм Эдмондса — Карпа решает задачу нахождения максимального потока в транспортной сети. Алгоритм представляет собой частный случай метода Форда — Фалкерсона и работает за время O(VE2). Впервые был опубликован в 1970 году советским учёным Е. А. Диницом. Позже, в 1972 году, был независимо открыт Эдмондсом и Карпом.

Содержание

Алгоритм

Алгоритм Эдмондса — Карпа - это вариант алгоритма Форда — Фалкерсона, при котором на каждом шаге выбирают кратчайший дополняющий путь из s в t в остаточной сети (полагая, что каждое ребро имеет единичную длину). Кратчайший путь находится поиском в ширину.

Описание

  1. Обнуляем все потоки. Остаточная сеть изначально совпадает с исходной сетью.
  2. В остаточной сети находим крачайший путь из источника в сток. Если такого пути нет, останавливаемся.
  3. Пускаем через найденный путь (он называется увеличивающим путём или увеличивающей цепью) максимально возможный поток:
    1. На найденном пути в остаточном сети ищем ребро с минимальной пропускной способностью cmin.
    2. Для каждого ребра на найденном пути увеличиваем поток на cmin, а в противоположном ему - уменьшаем на cmin.
    3. Модифицируем остаточную сеть. Для всех рёбер на найденном пути, а также для противоположных им рёбер, вычисляем новую пропускную способность. Если она стала ненулевой, добавляем ребро к остаточной сети, а если обнулилась, стираем его.
  4. Возвращаемся на шаг 2.

Чтобы найти кратчайший путь в графе, используем поиск в ширину:

  1. Создаём очередь вершин О. Вначале О состоит из единственной вершины s.
  2. Отмечаем вершину s как посещённую, без предка, а все остальные как непосещённые.
  3. Пока очередь непуста, выполняем следующие шаги:
    1. Удаляем первую в очереди вершину u.
    2. Для всех рёбер (u, v), исходящих из вершины u, таких что вершина v ещё не посещена, выполняем следующие шаги:
      1. Отмечаем вершину v как посещённую, с предком u.
      2. Добавляем вершину v в конец очереди
      3. Если v=t, выходим из обоих циклов: мы нашли кратчайший путь.
  4. Если очередь пуста, возвращаем ответ, что пути нет вообще и останавливаемся.
  5. Если нет, идём от t к s, каждый раз переходя к предку. Возвращаем путь в обратном порядке.

Сложность

В процессе работы алгоритм Эдмондса — Карпа будет находить каждый дополняющий путь за время O(V + E). Можно доказать, что общее число увеличений потока, выполняемое данным алгоритмом, составляет O(VE). Таким образом, сложность алгоритма Эдмондса — Карпа равна O(VE2).

Пример

Пусть задана сеть с истоком в вершине A и стоком в вершине G. На рисунке парой f / c обозначен поток по этому ребру и его пропускная способность.

Edmonds-Karp flow example 0.svg

Поиск в ширину

Опишем поиск в ширину на первом шаге.

  1. Очередь состоит из единственной вершины A. Посещена вершина A. Предков нет.
  2. Очередь состоит (от начала к концу) из вершин B и D. Посещены вершины A,B,D. Вершины B,D имеют предка А.
  3. Очередь состоит из вершин D и C. Посещены A,B,C,D. Вершины B,D имеют предка А, вершина C - предка B.
  4. Очередь состоит из вершин C,E,F. Посещены A,B,C,D,E,F. Вершины B,D имеют предка А, вершина C - предка B, вершины E,F - предка D.
  5. Вершина C удаляется из очереди: рёбра из неё ведут только в уже посещённые вершины.
  6. Обнаруживается ребро (E,G) и цикл останавливается. В очереди вершины (F,G). Посещены все вершины. Вершины B,D имеют предка А, вершина C - предка B, вершины E,F - предка D, вершина G - предка E.
  7. Идём по предкам: G->E->D->A. Возвращаем пройденный путь в обратном порядке: А->D->E->G.

Заметим, что в очередь последовательно добавляли вершины, достижимые из A ровно за 1 шаг, ровно за 2 шага, ровно за 3 шага. Кроме того, предком каждой вершины является вершина, достижимая из A ровно на 1 шаг быстрее.

Основной алгоритм

Пропускная способность пути Путь
min(cf(A,D),cf(D,E),cf(E,G)) =

min(3 − 0,2 − 0,1 − 0) =
min(3,2,1) = 1

A,D,E,G
Edmonds-Karp flow example 1.svg
min(cf(A,D),cf(D,F),cf(F,G)) =

min(3 − 1,6 − 0,9 − 0) =
min(2,6,9) = 2

A,D,F,G
Edmonds-Karp flow example 2.svg
min(cf(A,B),cf(B,C),cf(C,D),cf(D,F),cf(F,G)) =

min(3 − 0,4 − 0,1 − 0,6 − 2,9 − 2) =
min(3,4,1,4,7) = 1

A,B,C,D,F,G
Edmonds-Karp flow example 3.svg
min(cf(A,B),cf(B,C),cf(C,E),cf(E,D),cf(D,F),cf(F,G)) =

min(3 − 1,4 − 1,2 − 0,0 − − 1,6 − 3,9 − 3) =
min(2,3,2,1,3,6) = 1

A,B,C,E,D,F,G
Edmonds-Karp flow example 4.svg

Отметим, что в процессе выполнения алгоритма длины дополняющих путей (на рисунках обозначены красным) не убывают. Это свойство выполняется благодаря тому, что мы ищем кратчайший дополняющий путь.

Алгоритм Диница

Улучшенной версией алгоритма Эдмондса-Карпа является алгоритм Диница, требующий O( | V | 2 | E | ) операций.

Назовём вспомогательной бесконтурной сетью графа G с источником s его подграф, содержащий только такие рёбра (u, v), для которых минимальное расстояние от s до v на единицу больше минимального расстояния от s до u.

Алгоритм Диница:

  1. Строим минимальную бесконтурную сеть остаточного графа.
  2. Пока в сети есть путь из s в t, выполнить следующие шаги:
    1. Находим кратчайший путь из s в t. Если его нет, выйти из цикла.
    2. На найденном пути в остаточной сети ищем ребро с минимальной пропускной способностью cmin.
    3. Для каждого ребра на найденном пути увеличиваем поток на cmin, а в противоположном ему - уменьшаем на cmin.
    4. Удаляем все рёбра, достигшие насыщения.
    5. Удаляем все тупики (то есть вершины, кроме стока, откуда не выходит рёбер, и вершины, кроме источника, куда рёбер не входит) вместе со всеми инцидентными им рёбрами.
    6. Повторяем предыдущий шаг, пока есть что удалять.
  3. Если найденный поток ненулевой, добавляем его к общему потоку и возвращаемся на шаг 1.

Cсылки

Литература

  • Томас Кормен и др. Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. — 2-е изд. — М.: «Вильямс», 2006. — С. 1296. — ISBN 0-07-013151-1

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Алгоритм Эдмондса — Карпа" в других словарях:

  • Алгоритм Эдмондса — Алгоритм Эдмондса  Карпа решает задачу нахождения максимального потока в транспортной сети. Алгоритм представляет собой частный случай метода Форда  Фалкерсона и работает за время . Впервые был опубликован в 1970 году советским учёным Е …   Википедия

  • Алгоритм Эдмондса-Карпа — …   Википедия

  • Алгоритм Форда — Фалкерсона — решает задачу нахождения максимального потока в транспортной сети. Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение 0: f(u,v) = 0 для всех . Затем величина потока итеративно увеличивается посредством… …   Википедия

  • Алгоритм Форда–Фалкерсона — решает задачу нахождения максимального потока в транспортной сети. Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение 0: f(u,v) = 0 для всех . Затем величина потока итеративно увеличивается посредством… …   Википедия

  • Алгоритм Диница — полиномиальный алгоритм для нахождения максимального потока в транспортной сети, предложенный в 1970 году израильским (бывшим русским) учёным Ефимом Диницем. Временная сложность алгоритма составляет . Получить такую оценку позволяет введение… …   Википедия

  • Алгоритм Форда — У этого термина существуют и другие значения, см. Алгоритм Форда. Алгоритм Форда  Фалкерсона решает задачу нахождения максимального потока в транспортной сети. Идея алгоритма заключается в следующем. Изначально величине потока присваивается… …   Википедия

  • Форда-Фалкерсона алгоритм — Алгоритм Форда Фалкерсона решает задачу нахождения максимального потока в транспортной сети. Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение 0: f(u,v) = 0 для всех . Затем величина потока итеративно… …   Википедия

  • Список алгоритмов — Эта страница информационный список. Основная статья: Алгоритм Ниже приводится список алгоритмов, группированный по категориям. Более детальные сведения приводятся в списке структур данных и …   Википедия

  • Программируемые алгоритмы —       Служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не устанавл …   Википедия

  • Карп, Ричард Мэннинг — Ричард Мэннинг Карп Richard Manning Karp …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»