- Производная Фреше
-
Произво́дная Фреше́ (сильная производная) — обобщение понятия производной на бесконечномерные банаховы пространства. Название дано в честь французского математика Мориса Фреше.
Определение
Пусть
— оператор, действующий из некоторого вещественного банахова пространства
в вещественное банахово пространство
.
Производной Фреше оператора
в точке
называется линейный оператор
, такой, что для любого
выполняется следующее равенство:
причем для остаточного члена
верно соотношение:
при
Если производная Фреше существует, то оператор
называется сильно дифференцируемым. Линейная часть приращения
в таком случае именуется дифференциалом Фреше функции
.
Можно показать, что производная Фреше, в том случае, когда она существует, совпадает с производной Гато.
См. также
Литература
- Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — М.: ФИЗМАТЛИТ, 2006. — 572 с. — ISBN 5-9221-0266-4.
- Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление — Любое издание.
Категории:- Дифференциальное исчисление
- Функциональный анализ
Wikimedia Foundation. 2010.