- Закон исключённого третьего
-
Закон исключённого третьего (лат. tertium non datur, то есть «третьего не дано») — закон классической логики, состоящий в том, что из двух высказываний — «А» или «не А» — одно обязательно является истинным, то есть два суждения, одно из которых является отрицанием другого, не могут быть одновременно ложными. Закон исключённого третьего является одним из основополагающих принципов «классической математики».
С «интуиционистской» (и, в частности, «конструктивистской)» точки зрения, установление истинности высказывания вида «А или не А» означает либо (а) установление истинности
, либо (б) установление истинности его отрицания
. Поскольку, вообще говоря, не существует общего метода, позволяющего для любого высказывания за конечное число шагов установить его истинность или истинность его отрицания, закон исключённого третьего не должен применяться в рамках интуиционистского и конструктивного направлений в математике как аксиома.
Содержание
Формулировка
В математической логике закон исключенного третьего выражается формулой
где
— знак дизъюнкции,
— знак отрицания.
Другие формулировки
Подобный смысл имеют другие логические законы, многие из которых сложились исторически. В частности, закон двойного отрицания и закон Пирса эквивалентны закону исключённого третьего. Это означает, что расширение системы аксиом интуиционистской логики любым из этих трёх законов в любом случае приводит к классической логике. И всё же, в общем случае, существуют логики, в которых все три закона неэквивалентны[1].
Примеры
Предположим, что P представляет собой утверждение «Сократ смертен». Тогда закон исключённого третьего для P примет вид: «Сократ смертен или Сократ бессмертен», откуда ясно, что закон отсекает все иные варианты, при которых Сократ и не смертен и не бессмертен. Последнее — это и есть то самое «третье», которое исключается.
Гораздо более тонкий пример применения закона исключённого третьего, который хорошо демонстрирует, почему он не является приемлемым с точки зрения интуиционизма, состоит в следующем. Предположим, что мы хотим доказать теорему, что существуют два иррациональных числа a и b, таких что
рационально. Известно, что
иррационально. Рассмотрим
. Если данное число рационально, то теорема доказана. Иначе возьмём
и
. Тогда
то есть рациональное число. По закону исключённого третьего иных вариантов быть не может. Поэтому, теорема в общем случае доказана. Причём доказательство предельно просто и элементарно. С другой стороны, если принять интуиционистскую точку зрения и отказаться от закона исключённого третьего, теорема хотя и может быть доказана, но доказательство её становится исключительно сложным.
Поправка: доказательство того факта, что иррациональное число в иррациональной степени может быть рациональным, может быть проведено элементарным способом. Он не требует использования каких-то глубоких результатов из теории чисел. А именно, в качестве первого числа возьмём корень квадратный из двух, а второе число пусть будет равно удвоенному логарифму 3 по основанию 2. Очевидно, что при возведении в степень получается рациональное число 3. При этом как основание степени, так и показатель иррациональны. Доказательство того, что логарифм иррационален, состоит в том, что если бы он равнялся m/n, то 2 в степени m было бы равно 3 в степени n, что невозможно.
Примечания
- ↑ Zena M. Ariola and Hugo Herbelin. Minimal classical logic and control operators. In Thirtieth International Colloquium on Automata, Languages and Programming , ICALP’03, Eindhoven, The Netherlands, June 30 — July 4, 2003, volume 2719 of Lecture Notes in Computer Science, pages 871—885. Springer-Verlag, 2003.[1]
См. также
Категории:- Математическая логика
- Законы логики
Wikimedia Foundation. 2010.