- Тест Дики
-
Тест Дики — Фуллера (DF-тест, Dickey — Fuller test) — это методика, которая используется в прикладной статистике и эконометрике для анализа временных рядов для проверки на стационарность. Является одним из тестов на единичные корни (Unit root test). Был предложен в 1979 году Дэвидом Дики (англ.) и Уэйном Фуллером (англ.).[1]
За вклад в исследование коинтегрированных процессов с использованием предложенного теста Дики — Фуллера проверки на стационарность, в 2003 году Клайв Грейнджер (Clive Grandger) получил Нобелевскую премию по экономике.[2]
Содержание
Понятие единичного корня
Временной ряд имеет единичный корень, или порядок интеграции один, если его первые разности образуют стационарный ряд. Это условие записывается как
если ряд первых разностей
является стационарным
.
При помощи этого теста проверяют значение коэффициента
в авторегрегрессионном уравнении первого порядка AR(1)
где
— временной ряд, а
— ошибка.
Если
, то процесс имеет единичный корень, в этом случае ряд
не стационарен, является интегрированным временным рядом первого порядка —
. Если
, то ряд стационарный —
.
Для финансово-экономических процессов значение
не свойственно, так как в этом случае процесс является «взрывным». Возникновение таких процессов маловероятно, так как финансово-экономическая среда достаточно инерционная, что не позволяет принимать бесконечно большие значения за малые промежутки времени.
Сущность DF-теста
Приведенное авторегрессионное уравнение AR(1) можно переписать в виде:[3]
где
, а
— оператор разности первого порядка
.
Поэтому проверка гипотезы о единичном корне в данном представлении означает проверку нулевой гипотезы о равенстве нулю коэффициента
. Поскольку случай «взрывных» процессов исключается, то тест является односторонним, то есть альтернативной гипотезой является гипотеза о том, что коэффициент
меньше нуля. Статистика теста (DF-статистика) — это обычная
-статистика для проверки значимости коэффициентов линейной регрессии. Однако, распределение данной статистики отличается от классического распределения
-статистики (распределение Стьюдента или асимптотическое нормальное распределение). Распределение DF-статистики выражается через винеровский процесс и называется распределением Дики — Фуллера.
Существует три версии теста (тестовых регрессий):
- Без константы и тренда
- С константой, но без тренда:
- С константой и линейным трендом:
Для каждой из трёх тестовых регрессий существуют свои критические значения DF-статистики, которые берутся из специальной таблицы Дики — Фуллера (МакКиннона). Если значение статистики лежит левее критического значения (критические значения — отрицательные) при данном уровне значимости, то нулевая гипотеза о единичном корне отклоняется и процесс признается стационарным (в смысле данного теста). В противном случае гипотеза не отвергается и процесс может содержать единичные корни, то есть быть нестационарным (интегрированным) временным рядом.
Критические значения статистики Дики — Фуллера
Критические значения статистики Дики — Фуллера при 1%-ном уровне значимости
Размер выборки AR-модель AR-модель с константой AR-модель с константой и трендом 25 -2,66 -3,75 -4,38 50 -2,62 -3,58 -4,15 100 -2,60 -3,51 -4,04 -2,58 -3,43 -3,96 Для сравнения критическое значение распределения Стьюдента для всех моделей на больших объёмах выборки — 2,33, на малых выборках — 2,5. МакКинноном также выведены приблизительные формулы для оценки критических значений.
Расширенный тест Дики — Фуллера (ADF)
Если в тестовые регрессии добавить лаги первых разностей временного ряда, то распределение DF-статистики (а значит, критические значения) не изменится. Такой тест называют расширенным тестом Дики — Фуллера (Augmented DF, ADF).
Необходимость включения лагов первых разностей связана с тем, что процесс может быть авторегрессией не первого, а более высокого порядка. Рассмотрим на примере модели AR(2):
Данную модель можно представить в виде:
Если временной ряд имеет один единичный корень, то первые разности по определению стационарны. А поскольку
по предположению нестационарен, то если коэффициент при нём не равен нулю, уравнение противоречиво. Таким образом, из предположения об интегрированности первого порядка для такого ряда следует, что
. Таким образом, для проверки наличия единичных корней в данной модели следует провести стандартный DF-тест для коэффициента при
, причем в тестовую регрессию должен быть добавлен лаг первой разности зависимой переменной.
Кроме указанной причины также существует и другая — ошибки модели могут не быть белым шумом, а быть некоторым стационарным ARMA-процессом, поэтому следует проверить наличие единичного корня для нескольких лагов. Следует, однако учесть, что увеличение числа лагов приводит к снижению мощности теста. Обычно ограничиваются тремя-четырьмя лагами.
Замечание
Тест Дики — Фуллера, как и многие другие тесты, проверяют наличие лишь одного единичного корня. Однако, процесс может иметь теоретически несколько единичных корней. В этом случае тест может быть некорректным. Поскольку обычно предполагается, что больше трёх единичных корней вряд ли могут встречаться в реальных экономических временных рядах, то теоретически обоснованным является тестирование в первую очередь ряда вторых разностей ряда. Если гипотеза единичного корня для этого ряда отвергается, то тогда тестируется единичный корень в первых разностях. Если на этом этапе гипотеза не отвергается, то исходный ряд имеет два единичных корня. Если отвергается, то проверяется единичный корень в самом временном ряде, как описано выше. На практике часто все делают в обратной последовательности, что не совсем корректно. Для корректных выводов необходимы результаты тестов для вторых и первых разностей наряду с самим временным рядом.
Примечания
- ↑ Dickey D. A. and Fuller W. A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root / Journal of the American Statistical Association. — 74. — 1979. — p. 427—-431.
- ↑ 2003 Nobel Prize in Economics
- ↑ Учебные материалы
Литература
- Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. Начальный курс. — М.: Дело, 2007. — 504 с. — ISBN 978-5-7749-0473-0.
См. также
- Тест Филипса — Перрона
- Тест Лейбурна
Категории:- Анализ временных рядов
- Статистические критерии
Wikimedia Foundation. 2010.