- Стандартное отображение
-
Стандартное отображение (англ. Standard map), известное также как стандартное отображение Чирикова (англ. Chirikov standard map) и отображение Чирикова-Тейлора (англ. Chirikov-Taylor map) — нелинейное отображение (что сохраняет объем) для двух канонических переменных,
(импульса и координаты). Отображение известно своими хаотическими свойствами, которые впервые были исследованы[1] Борисом Чириковым в 1969 году.
Отображение задается такими итерационными уравнениями:
где параметр
контролирует хаотичность системы.
Содержание
Модель ротатора
Стандартное отображение описывает движение классического ротатора — фиксированного стержня, на который не действует сила тяжести и который вращается без трения в плоскости вокруг оси, проходящей через один из его концов. Ротатор также испытывает вызванные внешней силой периодические во времени (с периодом единица) удары бесконечно короткой продолжительности. Переменные
b
соответствуют углу поворота ротатора и его угловому моменту после
-ого удара. Параметр
описывает силу удара. Функция Гамильтона ротатора может быть записана так:
где функция
— периодическая функция с периодом 1, на одном периоде совпадает с δ-функцией Дирака. Из вышеприведенной функции Гамильтона элементарно получается стандартное отображение.
Свойства
Для случая K = 0 отображение является линейным, поэтому существуют лишь периодические и квазипериодические тректории. При
отображение становится нелинейным, согласно теореме КАМ, происходит разрушение инвариантных торов и движения стохастических слоев, в которых динамика является хаотической. Рост
приводит к увеличению областей хаоса на фазовой плоскости
. Благодаря периодичности функции
, динамику системы можно рассматривать на цилиндре [взяв
] или на торе [взяв
].
Стационарные точки отражения определяются из условия
. На интервале
,
такими точками являются
и
(вследствие симетрчности фазовой плоскости системы
при инверсии относительно точки
стационарные точки
и
можно не рассматривать). Анализ линейной устойчивости отображения сводится к анализу системы уравнений
Из условияможно определить собственные значения матрицы
для обоих стационарных точек [
и
]:
Поскольку K> 0, то отсюда следует неравенство
. В то же время справедливо неравенство
для произвольных K> 0. Таким образом стационарная точка
является неустойчивой гиперболической точкой. Стационарная точка
является устойчивой эллиптической точкой при
, поскольку тогда
. Для
стационарная точка
теряет устойчивость и становится гиперболической.
Ниже критического значения параметра,
(Рис. 1) инвариантные торы делят фазовое пространство системы так, что момент импульса
является ограниченным — иными словами, диффузия
в стохастическом слое не может выходить за границы, ограниченные инвариантными торами. «Золотой» инвариантный тор разрушается, когда число вращения достигает значения
, что соответствует критическому значению параметра
(фазовое пространство системы для
изображено на Рис. 2). На данный момент строго не доказано, что
, однако численные расчеты показывают, что это скорее всего так. На сегоняшний день существует лишь строгое доказательство того, что при
. При
наблюдается режим глобального хаоса, когда стохастическое море с отдельными островками устойчивости покрывает всё фазовое пространство (см. Рис. 3.). Инвариантных торов, ограничивающих эволюцию в фазовом пространстве, уже нет, и можно говорить о диффузии траектории в хаотическом море.
Энтропия Колмогорова-Синая стандартного отображения хорошо описывается соотношением
для значений контрольного параметра
[2]
Квантовое стандартное отображение
Переход на квантового стандартного отображения происходит заменой динамических переменных
квантовомеханическими операторами
, которые удовлетворяют коммутационному соотношению
, где
— эффективная безразмерная постоянная Планка.
Основным свойством квантового отображения по сравнению с классическим является т. н. явление динамической локализации, заключающейся в подавлении хаотической диффузии за счет квантовых эффектов[3].
Применение
Много физических систем и явлений сводятся к стандартному отображению. Это, в частности,
- Динамика частиц в ускорителях;
- Динамика кометы в Солнечной системе;
- Микроволновая ионизация ридберговских атомов и автоионизация молекулярных ридберговских состояний;
- Электронный магнетотранспорт в резонансном туннельном диоде;
- Конфайнмент заряженных частиц в зеркальных магнитных ловушках;
Модель Френкеля-Конторова
Модель Френкеля-Конторова следует выделить отдельно как первую модель, в которой уравнения стандартного отображения были записаны аналитически. Эта модель используется для описания динамики дислокаций, монослоев на поверхностях кристаллов, волн плотности заряда, сухого трения. Модель в стационарном случае задает связь между положениями взаимодействующих частиц (например атомов) в поле пространственно-периодического потенциала. Функция Гамильтона одномерной цепочки атомов, взаимодействующих с ближайшими соседями через параболический потенциал взаимодействия и находящимися в поле косинусоидального потенциала, который описывает кристаллическую поверхность, имеет следующий вид:
Здесь— отклонение атома от своего положения равновесия. В стационарном случае (
) это приводит к следующему уравнению
которое заменойможно свести к обычной записи стандартного отображения.
Примечания
- ↑ B.V.Chirikov, «Research concerning the theory of nonlinear resonance and stochasticity», Preprint N 267, Institute of Nuclear Physics, Novosibirsk (1969), (Engl. Trans., CERN Trans. 71-40 (1971)).
- ↑ B.V.Chirikov, «A universal instability of many-dimensional oscillator systems», Phys. Rep. 52: 263 (1979).
- ↑ G.Casati, B.V.Chirikov, F.M.Izrailev, J.Ford, Lecture Notes in Physics, Springer, Berlin, 93: 334 (1979)
Литература
- Стандартное отображение Чирикова на www.scholarpedia.org (на английском).
- Standard map на MathWorld (на английском).
- Lichtenberg, A.J. and Lieberman, M.A. Regular and Chaotic Dynamics. — Springer, Berlin, 1992. — ISBN ISBN 978-0-387-97745-4 Springer link
- Ott, Edward Chaos in Dynamical Systems. — Cambridge University Press New, York, 2002. — ISBN ISBN 0-521-01084-5
- Sprott, Julien Clinton Chaos and Time-Series Analysis. — Oxford University Press, 2003. — ISBN ISBN 0-19-850840-9
- B.V.Chirikov, «Time-dependent quantum systems» in «Chaos and quantum mechanics», Les Houches Lecture Series, Vol. 52, pp.443-545, Eds. M.-J.Giannoni, A.Voros, J.Zinn-Justin, Elsevier Sci. Publ., Amsterdam (1991).
Категории:- Теория хаоса
- Хаотические отображения
Wikimedia Foundation. 2010.