- Метод Пиявского
-
Метод Пиявского - метод нахождения глобального минимума (максимума) липшицевой функции, заданной на компакте. Прост в реализации и имеет достаточно простые условия сходимости. Подходит для широкого класса функций, производную которых, например, мы можем ограничить.
Идея метода
Пусть функция
, заданная на
, удовлетворяет условию Липшица:
.
Из условий Липшица очевидным образом вытекает двухстороннее неравенство, которое ограничивает ожидаемое поведение функции.
,
где
, точка, в которой произведено измерение.
Пусть проведено несколько испытаний
.
Функцию
назовем минорантой, а
- мажорантой.
Графически представляют собой ломаные, поэтому метод Пиявского часто так же называют методом ломаных. Очевидно, что они ограничивают функцию с двух сторон:
Обозначим
. Глобальный минимум функции
может быть оценен:
Сделав указанный "коридор" меньше наперед заданного
, можно отыскать глобальный минимум функции. Метод Пиявского на каждом шаге производит новое испытание функции
, корректируя при этом миноранту и текущую оценку глобального минимума. Испытания проводятся в точке минимума текущей миноранты.
Алгоритм
- Задаем (или оцениваем) константу Липшица
, точность
, и
- количество начальных испытаний.
- Проводим эти испытания в любых различных точках на компакте
.
.
. Можно просто сравнивать со значением на предыдущей итерации.
, где
.
- Если
- остановка. Минимум найден в точке
.
- Проводится испытание
.
. Корректируется миноранта. Возврат на шаг 2.
Теорема сходимости
Пусть
- компакт.
- липшицева, с константой
,
. Тогда при любом способе размещения начальных точек
, метод Пиявского остановится через конечное число шагов
, причем
.
На эту статью не ссылаются другие статьи Википедии. Пожалуйста, воспользуйтесь подсказкой и установите ссылки в соответствии с принятыми рекомендациями.Категория:- Алгоритмы оптимизации
- Задаем (или оцениваем) константу Липшица
Wikimedia Foundation. 2010.