- Кольца Ньютона
-
Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину.
Содержание
Описание
Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны (например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон исследовав их в монохроматическом и белом свете обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному).[1]
Классическое объяснение явления
Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу (рис. 1).
Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны, то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.
— max, где -
любое целое число,
- длина волны.
Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.
— min, где -
любое целое число,
- длина волны.
Для учета того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптической разностью хода.
— оптическая длина пути,
— оптическая разность хода.
Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на
, этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном — эллипсы.
Радиус k-го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:где
- R — радиус кривизны линзы;
- k = 2, 4, …;
- λ — длина волны света в вакууме;
- n — показатель преломления среды между линзой и пластинкой.
Использование
Кольца Ньютона используются для измерения радиусов кривизны поверхностей, для измерения длин волн света и показателей преломления. В некоторых случаях (например, при сканировании изображений на плёнках или оптической печати с негатива) кольца Ньютона представляют собой нежелательное явление.
Примечания
- ↑ Мякишев Г. Я., Буховцев Б. Б. §58. Интерференция света // Физика: Учеб. для 10 кл. сред. шк. — 9-е изд. — М.: Просвещение, 1987. — С. 160. — 319 с.
Ссылки
Кольца Ньютона: тематические медиа-файлы на Викискладе
- Фото колец Ньютона в красном монохроматическом свете
- Стрижко А. Н. Определение радиуса кривизны плосковыпуклой линзы с помощью колец Ньютона (рус.). Единое окно доступа к образовательным ресурсам. Архивировано из первоисточника 16 февраля 2012. Проверено 3 июня 2011.
- Виеоролик с демонстрацией колец Ньютона
Для улучшения этой статьи желательно?: - Исправить статью согласно стилистическим правилам Википедии.
- Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
Категории:- Оптические явления
- Физическая оптика
Wikimedia Foundation. 2010.