- Равновесие Нэша
-
Равновесие Нэша (англ. Nash equilibrium) названо в честь Джона Форбса Нэша — так в теории игр называется тип решений игры двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив своё решение в одностороннем порядке, когда другие участники не меняют решения. Такая совокупность стратегий выбранных участниками и их выигрыши называются равновесием Нэша[1].
Концепция равновесия Нэша (РН) впервые использована не Нэшем; Антуан Огюст Курно показал, как найти то, что мы называем равновесием Нэша, в игре Курно. Соответственно, некоторые авторы называют его равновесием Нэша-Курно. Однако Нэш первым показал в своей диссертации по некооперативным играм в 1950-м году, что подобные равновесия должны существовать для всех конечных игр с любым числом игроков. До Нэша это было доказано только для игр с 2 участниками с нулевой суммой Джоном фон Нейманом и Оскаром Моргенштерном (1947).
Содержание
Формальное определение
Допустим,
— игра n лиц в нормальной форме, где
— набор чистых стратегий, а
— набор выигрышей. Когда каждый игрок
выбирает стратегию
в профиле стратегий
, игрок
получает выигрыш
. Заметьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии, выбранной самим игроком
, но и от чужих стратегий. Профиль стратегий
является равновесием по Нэшу, если изменение своей стратегии с
на
не выгодно ни одному игроку
, то есть для любого
Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешить смешанные стратегии, тогда в каждой игре n игроков будет хотя бы одно равновесие Нэша.
Литература
- Васин А. А., Морозов В. В. Теория игр и модели математической экономики - М.: МГУ, 2005, 272 с.
- Воробьев Н. Н. Теория игр для экономистов-кибернетиков — М.: Наука, 1985
- Мазалов В. В. Математическая теория игр и приложения — Изд-во Лань, 2010, 446 с.
- Петросян Л. А., Зенкевич Н. А., Шевкопляс Е. В. Теория игр — СПб: БХВ-Петербург, 2012, 432 с.
См. также
Примечания
Теория игр Определения Некооперативная игра · Кооперативная игра · Антагонистическая игра · Стохастическая игра · Дифференциальные игры · Игрок · Стратегия · Доминирование стратегий Принципы оптимальности Равновесие Нэша · Эффективность по Парето · Равновесие в доминирующих стратегиях · Решение по доминированию · Равновесие дрожащей руки · Равновесие, совершенное по под-играм · Собственное равновесие · Сильное равновесие · Эпсилон-равновесие · Коррелированное равновесие · Секвенциальное равновесие · Доминирование по риску · Эволюционно стабильная стратегия Примеры игр Дилемма заключённого · Трагедия общин · Модель Бертрана · Модель Курно · Модель Штакельберга · Игра «Ястребы и голуби» Категория:- Теория игр
Wikimedia Foundation. 2010.