- Собственные значение и вектор матрицы
-
Wikimedia Foundation. 2010.
Собственные векторы — Собственные векторы, значения и пространства Красным цветом обозначен собственный вектор. Он, в отличие от синего, при деформации не изменил направление и длину, поэтому является собственным вектором, соответствующим собственному значению λ = 1.… … Википедия
Собственные векторы, значения и пространства — Синим цветом обозначен собственный вектор. Он, в отличие от красного, при деформации(преобразовании) не изменил направление и длину, поэтому является собственным вектором, соответствующим … Википедия
Корневой вектор — Красным цветом обозначен собственный вектор. Он, в отличие от синего, при деформации не изменил направление и длину, поэтому является собственным вектором, соответствующим собственному значению λ = 1. Любой вектор, параллельный красному вектору,… … Википедия
Характеристическое число матрицы — Красным цветом обозначен собственный вектор. Он, в отличие от синего, при деформации не изменил направление и длину, поэтому является собственным вектором, соответствующим собственному значению λ = 1. Любой вектор, параллельный красному вектору,… … Википедия
СОБСТВЕННЫЙ ВЕКТОР — оператора ненулевой вектор из векторногопространства L, к рый переводится данным оператором в пропорциональныйему вектор, т. е. где вещественное либо комплексное число наз. собственным значением оператора А. С. в. операторов … Физическая энциклопедия
Метод главных компонент — (англ. Principal component analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих областях,… … Википедия
Истинное ортогональное разложение — Метод Главных Компонент (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… … Википедия
Метод Главных Компонент — (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих областях, таких как… … Википедия
Преобразование Карунена-Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… … Википедия
Преобразование Кархунена-Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… … Википедия